مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری عمیق برای تشخیص نفوذ امنیت سایبری: رویکردها، مجموعه داده ها و مطالعه مقایسه ای |
عنوان انگلیسی مقاله | Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 19 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.569 در سال 2019 |
شاخص H_index | 31 در سال 2020 |
شاخص SJR | 0.387 در سال 2019 |
شناسه ISSN | 2214-2126 |
شاخص Quartile (چارک) | Q2 در سال 2019 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم ها و محاسبات، هوش مصنوعی، امنیت اطلاعات |
نوع ارائه مقاله |
ژورنال |
مجله | مجله امنیت اطلاعات و برنامه های کاربردی – Journal Of Information Security And Applications |
دانشگاه | Department of Computer Science, Guelma University, Guelma 24000, Algeria |
کلمات کلیدی | یادگیری ماشینی، یادگیری عمیق، امنیت سایبری، تشخیص نفوذ |
کلمات کلیدی انگلیسی | Machine learning، Deep learning، Cyber security، Intrusion detection |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jisa.2019.102419 |
کد محصول | E14413 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Related studies 3- Deep learning approaches-based intrusion detection systems 4- Public datasets 5- Deep learning approaches 6- Experimentation 7- Conclusion References |
بخشی از متن مقاله: |
Abstract In this paper, we present a survey of deep learning approaches for cyber security intrusion detection, the datasets used, and a comparative study. Specifically, we provide a review of intrusion detection systems based on deep learning approaches. The dataset plays an important role in intrusion detection, therefore we describe 35 well-known cyber datasets and provide a classification of these datasets into seven categories; namely, network traffic-based dataset, electrical network-based dataset, internet traffic-based dataset, virtual private network-based dataset, android apps-based dataset, IoT traffic-based dataset, and internet-connected devices-based dataset. We analyze seven deep learning models including recurrent neural networks, deep neural networks, restricted Boltzmann machines, deep belief networks, convolutional neural networks, deep Boltzmann machines, and deep autoencoders. For each model, we study the performance in two categories of classification (binary and multiclass) under two new real traffic datasets, namely, the CSE-CIC-IDS2018 dataset and the Bot-IoT dataset. In addition, we use the most important performance indicators, namely, accuracy, false alarm rate, and detection rate for evaluating the efficiency of several methods. Introduction Critical National Infrastructures (CNIs) such as ports, water and gas distributors, hospitals, energy providers are becoming the main targets of cyber attacks. Supervisory Control and Data Acquisitions (SCADA) or Industrial Control Systems (ICS) in general are the core systems that CNIs rely on in order to manage their production. Protection of ICSs and CNIs has become an essential issue to be considered in an organizational, national and European level. For instance, in order to cope with the increasing risk of CNIs, Europe has issued during the past years a number of directives and regulations that try to create a coherent framework for securing networks, information and electronic communications. Apart from regulations, directives and policies, specific security measures are also needed to cover all legal, organizational, capacity building and technical aspects of cyber security [1]. Intrusion detection systems (IDS) [2] are part of the second defense line of a system. IDSs can be deployed along with other secu-rity measures, such as access control, authentication mechanisms and encryption techniques in order to better secure the systems against cyber attacks. Using patterns of benign traffic or normal behavior or specific rules that describe a specific attack, IDSs can distinguish between normal and malicious actions [3]. According to Dewa and Maglaras [4], data mining which is used to describe knowledge discovery can help to implement and deploy IDSs with higher accuracy and robust behavior as compared to traditional IDSs that may not be as effective against modern sophisticated cyber attacks [5]. |