مقاله انگلیسی رایگان در مورد ساختار شبکه تعادل نش – الزویر 2020

 

مشخصات مقاله
ترجمه عنوان مقاله غلبه truthtelling و ساختار شبکه تعادل نش
عنوان انگلیسی مقاله Dominance of truthtelling and the lattice structure of Nash equilibria
انتشار مقاله سال 2020
تعداد صفحات مقاله انگلیسی 30 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
1.407 در سال 2019
شاخص H_index 88 در سال 2020
شاخص SJR 3.467 در سال 2019
شناسه ISSN 0022-0531
شاخص Quartile (چارک) Q1 در سال 2019
مدل مفهومی دارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط اقتصاد، علوم اجتماعی
گرایش های مرتبط اقتصاد نظری
نوع ارائه مقاله
ژورنال
مجله  مجله تئوری اقتصادی – Journal Of Economic Theory
دانشگاه Division of Social Science, New York University Abu Dhabi, United Arab Emirates
کلمات کلیدی قوانین تخصیص متوالی، بازی ضداستراتژی، Truthtelling، شبکه، غلبه پارتو
کلمات کلیدی انگلیسی Sequential allotment rules، Strategy-proofness، Truthtelling، Lattice، Pareto dominance
شناسه دیجیتال – doi
https://doi.org/10.1016/j.jet.2019.104952
کد محصول E14425
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1- Introduction

2- Model and definitions

3- Lattice structure of Nash equilibrium allocations

4- Discussion: robustness checks and extensions

5- Conclusion

References

بخشی از متن مقاله:

Abstract

Truthtelling is often viewed as focal in the direct mechanisms associated with strategy-proof decision rules. Yet many direct mechanisms also admit Nash equilibria whose outcomes differ from the one under truthtelling. We study a model that has been widely discussed in the mechanism design literature (Sprumont, 1991) and whose strategy-proof and efficient rules typically suffer from the aforementioned deficit. We show that when a rule in this class satisfies the mild additional requirement of replacement monotonicity, the set of Nash equilibrium allocations of its preference revelation game is a complete lattice with respect to the order of Pareto dominance. Furthermore, the supremum of the lattice is the one obtained under truthtelling. In other words, truthtelling Pareto dominates all other Nash equilibria. For the rich subclass of weighted uniform rules, the Nash equilibrium allocations are, in addition, strictly Pareto ranked. We discuss the tightness of the result and some possible extensions.

Introduction

In the mechanism design literature, the single-peaked preference domain has played a central role. Most importantly, it paved a way out of the many impossibility results on the design of prior-free mechanisms. The celebrated Gibbard and Satterthwaite theorem (see Gibbard (1973) and Satterthwaite (1975)) showed the impossibility of designing efficient and strategy-proof rules that would escape the dictatorship predicament under arbitrary preferences. In contrast, within the confine of the single-peaked domain, possibility results emerge. In a pathbreaking paper, Moulin (1980) characterizes the class of generalized median voting rules when the feasible set is made of all points on a line. On the private goods front, Sprumont (1991) studies the problem of allocating a divisible and nondisposable good.1 Sprumont (1991) characterizes a remarkable rule: the uniform rule which is uniquely characterized down by efficiency, strategy-proofness and a fairness requirement. The Sprumont model has received a great deal of attention in the mechanism design literature, from alternative characterizations of the uniform rule (see e.g. Ching (1994), Thomson (1994a,b, 1995, 1997)), to the exploration of different families of rules (Barberà et al. (1997), Moulin (1999)), or the extensions of the model and the preference domain (see e.g. Adachi (2010), Bochet et al. (2013), Massó and Neme (2004) among others).2 In this paper, we show an unexpected property for a rich family of rules in the Sprumont model. We consider the largest class identified in the literature, the sequential allotment rules, characterized in Barberà et al. (1997) by the combination of efficiency, strategy-proofness and replacement monotonicity. Notice that each sequential allotment rule is fully implementable in dominant strategies by its direct revelation mechanism—this can be seen for instance following the results in Mizukami and Wakayama (2007).

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا