مقاله انگلیسی رایگان در مورد ضریب دینامیکی عمومی در چرخ دنده – الزویر ۲۰۱۸
مشخصات مقاله | |
ترجمه عنوان مقاله | روشی برای محاسبه KAV ضریب دینامیکی عمومی در چرخ دنده ها در معرض شرایط بارگذاری و سرعت متغیر |
عنوان انگلیسی مقاله | Method for calculating a global dynamic factor KAV in gears subjected to variable velocity and loading conditions |
انتشار | مقاله سال ۲۰۱۸ |
تعداد صفحات مقاله انگلیسی | ۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۰٫۹۷۰ در سال ۲۰۱۸ |
شاخص H_index | ۵۱ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۲۷۷ در سال ۲۰۱۸ |
شناسه ISSN | ۱۸۷۷-۷۰۵۸ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی مکانیک |
گرایش های مرتبط | مکانیک خودرو |
نوع ارائه مقاله |
ژورنال و کنفرانس |
مجله / کنفرانس | پروسیدیای مهندسی – Procedia Engineering |
دانشگاه | Department of Mechanical and Aerospace Engineering, Politecnico di Torino, corso Duca degli Abruzzi 24, Torino, Italy |
کلمات کلیدی | چرخ دنده، عامل دینامیک داخلی، عامل کاربردی، بارهای متغیر، آسیب تجمعی |
کلمات کلیدی انگلیسی | gear; internal dynamic factor; application factor; variable loads; cumulative damage |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.proeng.2018.02.015 |
کد محصول | E12458 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
۱٫ Introduction ۲٫ Theoretical background: method for calculating the global dynamic factor KAV ۳٫ Practical case: accessories gearbox for aerospace application ۴٫ Results and discussion ۵٫ Conclusions References |
بخشی از متن مقاله: |
Abstract
The present paper aims to propose a method, in ISO Standard environment, in order to calculate a single global dynamic factor KAV, replacing both KA and KV, in case of gears subjected to variable velocity and loading conditions. This procedure, based on the Miner damage rule, allows to process a given load spectrum and to calculate a value of the equivalent tangential force that includes all dynamic effects; this force value is useful for bending and pitting calculation of the service life. In this work a practical case for bending strength is presented, based on a recorded flight mission, referring to a gear box for aerospace applications. Obtained results in terms of equivalent forces and global dynamic factor values have been compared to those calculated by means of the classical ISO Standard formulae, based on the corresponding experimental data. Introduction Classical design formulae available in literature to determine the load capacity of spur and helical gear drives are intended, both for pitting resistance and bending strength, to establish uniformly acceptable methods to assess the corresponding life estimation. The most common approach, widely described in ANSI/AGMA Standard 2001-D04 [1] and in ISO 6336-1 Standard [2-6], compares the calculated maximum stress values (tensile and contact, for bending and pitting respectively) to the permissible ones representing the limit value for stresses (tensile and contact) derived from material tests using meshing gears as test pieces. Referring as an example to the bending case [1, 3], discussed in detail in the present paper, the permissible bending stress σFP provides damage curves characterized by the nominal stress number σFlim and by the life factor YNT, and then corrected using the relative influence factors for notch sensitivity, surface roughness, size. For as concerns the calculated stress, the tooth root stress σF is the maximum tensile stress at the surface in the root and it can be obtained by multiplying the nominal tooth root stress (which is the maximum local principal stress produced at the tooth root) by the so called overload factors. Overload factors [1-4] are generally influence factors, independent each other, that aim to take into account uneven overloading conditions of gears. |