مقاله انگلیسی رایگان در مورد بازیافت شیمیایی پسماندهای PLA برای تولید پایدار اتیل لاکتات – الزویر ۲۰۲۱
مشخصات مقاله | |
ترجمه عنوان مقاله | بازیافت شیمیایی پسماندهای PLA پس از مصرف برای تولید پایدار اتیل لاکتات |
عنوان انگلیسی مقاله | Chemical Recycling of Post-Consumer PLA Waste for Sustainable Production of Ethyl Lactate |
انتشار | مقاله سال ۲۰۲۱ |
تعداد صفحات مقاله انگلیسی | ۳۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۱۰٫۶۵۲ در سال ۲۰۲۰ |
شاخص H_index | ۰ در سال ۲۰۲۱ |
شاخص SJR | ۰٫۱۲۵ در سال ۲۰۲۰ |
شناسه ISSN | ۱۳۸۵-۸۹۴۷ |
شاخص Quartile (چارک) | Q3 در سال ۲۰۲۰ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی شیمی، محیط زیست |
گرایش های مرتبط | بازیافت و مدیریت پسماند |
نوع ارائه مقاله |
ژورنال |
مجله | مجله مهندسی شیمی – Chemical Engineering Journal |
دانشگاه | Technische Universität Hamburg, Germany |
کلمات کلیدی | پلاستیک های مبتنی بر زیست ، اسید پلی (لاکتیک) (PLA) ، شیمی سبز ، بازیافت ، استر لاکتات ، اقتصاد زیستی دایره ای |
کلمات کلیدی انگلیسی | bio-based plastics, poly(lactic) acid (PLA), green chemistry, recycling, lactate ester, circular bio-economy |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.cej.2021.129952 |
کد محصول | E15386 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Highlights Abstract Keywords Nomenclature ۱٫ Introduction ۲٫ Choice of the recycling strategy ۳٫ Materials and methods ۴٫ Results and discussions ۵٫ Conclusions Declaration of Competing Interest Acknowledgements References |
بخشی از متن مقاله: |
Abstract Though synthetic plastics are indispensable in our everyday life, the uncertainty surrounding the sustainability of fossil reserves has led to the development of a novel class of plastics, referred to as bio-based plastics. Poly(lactic) acid (PLA) is the most frequently used member of this family. However, due to the lack of a holistic recycling strategy, its large scale utilization can turn out to be an acute source of plastic pollution in the future. Unlike other attempts directed towards chemical recycling of PLA which violate the basic principles of green chemistry, the following research establishes an eco-friendly recycling concept aimed at the production of a valuable lactate ester through solvent assisted transesterification of PLA waste. The scope of this research is not only limited to the selection of an appropriate system (solvent, nucleophile and catalyst) but also extends to analysing the selectivity of the solvent towards the PLA fraction in a commingled stream and the effect of the concentration of nucleophile and different PLA substrates on the yield of the lactate ester. It was observed that, irrespective of the source of PLA, a high yield of ethyl lactate (approx. 80%) with complete retention of stereochemistry was obtained for a molar ratio of nucleophile per mole repeat unit of PLA (nnuc:nrpu) equivalent to 3. Thus, this work represents an attempt towards instituting circular bio-economy by overcoming the engineering and environmental challenges associated with PLA-waste management and production of ethyl lactate; while strictly adhering to the principles of green chemistry and sustainable chemical engineering. ۱٫ Introduction Although the mass production of synthetic plastics only dates back to 1950, they have become the most abundant anthropogenic materials and serve as a geological indicator of the Anthropocene era [1]. The annual plastic production is expected to reach 1124 million tons by 2050; thereby, consuming 20% of the crude oil produced globally as opposed to 6% in 2014 [2], [3]. Though these synthetic polymers are designed for their durable performance, their rapid growth as “materials of everyday use”, indiscriminate disposal and resistance to biological degradation presents an extensive threat to the environment [4]. In lieu of rising awareness about sustainability coupled with the pressure from global climate change over the past two decades, bio-based plastics have gained impetus as novel materials synchronous to the concept of sustainable production and utilization [4], [5]. Though this class accounts for less than 1% of the global annual plastic production, its global production capacity is estimated to increase from 2.11 million tons in 2020 to 2.87 million tons in 2025 at a compounded annual growth rate of 6.3% [6], [7]. Amongst other bio-based polymers, PLA is the most promising polyester [3], [5], [8]. It is regarded as a sustainable alternative to synthetic, petrochemical plastics such as PET and PS on account of its similar mechanical properties [5]. Accounting for 62.5% of its total annual production, NatureWorks® (۱۵۰,۰۰۰ tons; USA) and Total Corbion PLA (75,000 tons; Thailand) are the major producers of PLA in the global market [9]. PLA has expanded itself in several markets, ranging from disposable cutlery and degradable sutures to rigid packaging and extrusion coatings [5], [10], [11], [12], [13]. This is evident from the fact that, the relative share of PLA in the total global production of bio-plastics has increased from 13.9% in 2019 to 18.7% in 2020 [7]. However, the food packaging sector continues to be the most dominant market for PLA [11], [12], [13]. |