مشخصات مقاله | |
ترجمه عنوان مقاله | تغییر در هدایت هیدرولیکی سنگهای شکسته در پایه سد در حین کار |
عنوان انگلیسی مقاله | Variation in hydraulic conductivity of fractured rocks at a dam foundation during operation |
انتشار | مقاله سال 2021 |
تعداد صفحات مقاله انگلیسی | 17 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | DOAJ – Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.829 در سال 2020 |
شاخص H_index | 34 در سال 2021 |
شاخص SJR | 1.336 در سال 2020 |
شناسه ISSN | 1674-7755 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی عمران ، مهندسی معدن |
گرایش های مرتبط | ژئوتکنیک، مهندسی آب و سازه های هیدرولیکی، مکانیک سنگ |
نوع ارائه مقاله |
ژورنال |
مجله | تحقیق در تجارت و امور مالی بین الملل – Journal of Rock Mechanics and Geotechnical Engineering |
دانشگاه | Wuhan University, China |
کلمات کلیدی | تنوع نفوذپذیری ، سنگ شکسته ، گرفتگی شکستگی ، کنترل تراوش ، مهندسی سد |
کلمات کلیدی انگلیسی | Permeability variation, Fractured rock, Fracture clogging, Seepage control, Dam engineering |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jrmge.2020.09.008 |
کد محصول | E15418 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords 1. Introduction 2. Site characterization 3. Methods 4. Results 5. Conclusions Declaration of competing interest Acknowledgments Nomenclature References Vitae |
بخشی از متن مقاله: |
Abstract Characterizing the permeability variation in fractured rocks is important in various subsurface applications, but how the permeability evolves in the foundation rocks of high dams during operation remains poorly understood. This permeability change is commonly evidenced by a continuous decrease in the amount of discharge (especially for dams on sediment-laden rivers), and can be attributed to fracture clogging and/or hydromechanical coupling. In this study, the permeability evolution of fractured rocks at a high arch dam foundation during operation was evaluated by inverse modeling based on the field time-series data of both pore pressure and discharge. A procedure combining orthogonal design, transient flow modeling, artificial neural network, and genetic algorithm was adopted to efficiently estimate the hydraulic conductivity values in each annual cycle after initial reservoir filling. The inverse results show that the permeability of the dam foundation rocks follows an exponential decay annually during operation (i.e. K/K0 = 0.97e−0.59t + 0.03), with good agreement between field observations and numerical simulations. The significance of the obtained permeability decay function was manifested by an assessment of the long-term seepage control performance and groundwater flow behaviors at the dam site. The proposed formula is also of merit for characterizing the permeability change in riverbed rocks induced by sediment transport and deposition. 1. Introduction Characterizing the permeability of fractured rock formations is crucial to various subsurface applications, such as groundwater modeling (Chen et al., 2016a), oil and gas production (Mohamadi-Baghmolaei et al., 2016), thermal energy extraction (Sun et al., 2017), contaminant transport simulation (Carrera, 1993), hyporheic exchange characterization (Rozemeijer et al., 2010; Barlow and Coupe, 2012; Kiel and Cardenas, 2014), and optimization design of impervious barriers in dam engineering (Li et al., 2014, 2017; Chen et al., 2015). It has been well understood that the permeability of rocks is determined by the geometries (e.g. size, roughness and interconnectivity) of the void space consisting of pores and fractures through which the fluid transmits. The permeability could hence be highly anisotropic, heterogeneous, and scale-dependent (Snow, 1969), and varies with time as the flow geometries change. This could be induced by various processes such as rock deformation (Chen et al., 2007), damage (Chen et al., 2014), erosion (Sadhukhan et al., 2007), and particle clogging (Nowinski et al., 2011). |