مشخصات مقاله | |
ترجمه عنوان مقاله | آموزش شبکه های عصبی عمیق برای شبکه های حسگر بی سیم با استفاده از تصاویر برچسب گذاری شده به طور آزاد و ضعیف |
عنوان انگلیسی مقاله | Training deep neural networks for wireless sensor networks using loosely and weakly labeled images |
انتشار | مقاله سال 2021 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
7.083 در سال 2020 |
شاخص H_index | 143 در سال 2021 |
شاخص SJR | 1.085 در سال 2020 |
شناسه ISSN | 0925-2312 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر، مهندسی فناوری اطلاعات |
گرایش های مرتبط | هوش مصنوعی، شبکه های کامپیوتری |
نوع ارائه مقاله |
ژورنال |
مجله | Neurocomputing – محاسبات نورونی |
دانشگاه | Zhejiang University of Technology, China |
کلمات کلیدی | شبکه های عصبی عمیق، شبکه های حسگر بی سیم، برچسب گذاری داده های خودکار، تشخیص تصویر، یادگیری انتقالی، فشرده سازی مدل |
کلمات کلیدی انگلیسی | Deep Neural Networks, Wireless Sensor Networks, Automated Data Labeling, Image Recognition, Transfer Learning, Model Compression |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.neucom.2020.09.040 |
کد محصول | E15445 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords 1. Introduction 2. Cost-effective domain generalization 3. An implementation of cost-effective domain generalization 4. Experiments and results 5. Conclusion CRediT authorship contribution statement Declaration of Competing Interest Acknowledgment Research Data References Vitae |
بخشی از متن مقاله: |
Abstract Although deep learning has achieved remarkable successes over the past years, few reports have been published about applying deep neural networks to Wireless Sensor Networks (WSNs) for image targets recognition where data, energy, computation resources are limited. In this work, a Cost-Effective Domain Generalization (CEDG) algorithm has been proposed to train an efficient network with minimum labor requirements. CEDG transfers networks from a publicly available source domain to an application-specific target domain through an automatically allocated synthetic domain. The target domain is isolated from parameters tuning and used for model selection and testing only. The target domain is significantly different from the source domain because it has new target categories and is consisted of low-quality images that are out of focus, low in resolution, low in illumination, low in photographing angle. The trained network has about 7 M (ResNet-20 is about 41 M) multiplications per prediction that is small enough to allow a digital signal processor chip to do real-time recognitions in our WSN. The category-level averaged error on the unseen and unbalanced target domain has been decreased by 41.12%. 1. Introduction Wireless sensor networks (WSNs) typically are designed to detect and identify neighboring objects in wild [1, 2, 3, 4] with sound or vibration sensors in the form of single [5] or microarrays [6]. The sound or vibration sensor has many advantages [7, 8, 5], such as low cost, low energy consumption, and relatively low in algorithm complexity. However, they are unsuitable for mixed objects detection because their spatial resolutions are usually too low to distinguish each person in a group of pedestrians. To overcome this shortage, we have employed cameras in our WSNs which has been proved to be effective for dense targets identification [9]. Unfortunately, images captured by WSNs are noisy, such as low in illumination, resolution and photographing angle, which are different from most publicly available datasets. Because the severe limitation in data and resources, despite the rapid development in deep learning [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], WSN-applicable deep-learning-based image classification algorithms evolve slowly. So, cost-effective dataset construction methods are needed urgently to build datasets that corresponding to specific WSN applications. Several random images of the target application (target domain) that was captured during our field experiments have been shown in Fig. 1, where targets like persons and cars are hard to identify. Because of limited communication bandwidth, WSNs cannot run deep neural networks (DNNs) in a remote cloud (or fog) which is a common strategy for embedded devices [21, 22, 23, 24, 25]. To run DNNs in such devices locally [26, 27], a training strategy is wanted to cut computation costs without decreasing identification accuracy significantly. Fortunately, Han et al. [28, 29] have pointed out that only parts of weight parameters in neural networks are playing essential roles during predictions. Therefore, it is possible to train an efficient DNN for WSNs with fewer parameters if we can fully utilize key weight parameters. |