مقاله انگلیسی رایگان در مورد باز ترکیب بیان شده با مخمر SARS-CoV-2 receptor binding domain RBD203-N1 – الزویر ۲۰۲۲

elsevier

 

مشخصات مقاله
ترجمه عنوان مقاله باز ترکیب بیان شده با مخمر SARS-CoV-2 receptor binding domain RBD203-N1 به عنوان یک کاندیدای واکسن پروتئین کووید-۱۹
عنوان انگلیسی مقاله Yeast-expressed recombinant SARS-CoV-2 receptor binding domain RBD203-N1 as a COVID-19 protein vaccine candidate
انتشار مقاله سال ۲۰۲۲
تعداد صفحات مقاله انگلیسی ۹ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR – Medline
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۱٫۶۵۰ در سال ۲۰۲۰
شاخص H_index ۸۸ در سال ۲۰۲۰
شاخص SJR ۰٫۴۵۸ در سال ۲۰۲۰
شناسه ISSN ۱۰۴۶-۵۹۲۸
شاخص Quartile (چارک) Q4 در سال ۲۰۲۰
فرضیه ندارد
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط پزشکی
گرایش های مرتبط ویروس شناسی پزشکی
نوع ارائه مقاله
ژورنال
مجله  بیان پروتئین و خالص سازی – Protein Expression and Purification
دانشگاه National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
کلمات کلیدی ویروس کرونا، پیکیا پاستوریس، خصوصیات زیستی فیزیکی، واکسن Subunit، خنثی سازی
کلمات کلیدی انگلیسی Coronavirus, P. pastoris, Biophysical characterization, Subunit vaccine, Neutralization
شناسه دیجیتال – doi
https://doi.org/10.1016/j.pep.2021.106003
کد محصول E15806
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
Keywords
Abbreviations
Introduction
Materials and methods
Results
Discussion
Conclusions
Author contributions
Declaration of Competing interest
Acknowledgments
Appendix A. Supplementary data
References

بخشی از متن مقاله:
ABSTRACT
SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± ۳٫۰ mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± ۳% (total yield of purified protein: 270.5 ± ۱۳٫۲ mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 proteinbased vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.
Introduction
As of October 7th, 2021, more than 6.4 billion doses of coronavirus vaccines have been administered in over 180 countries. However, this impressive vaccination campaign has still left approximately 60% of the global population without access to efficient protection from COVID-19 [1]. According to a recent analysis, people in the highest-income countries are getting vaccinated more than 20 times faster than those living in poverty [2].

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد.