مشخصات مقاله | |
ترجمه عنوان مقاله | پاسخ قاب ها و دیوارهای بتن مسلح بحرانی برشی تحت بارگذاری یکنواخت |
عنوان انگلیسی مقاله | Response of shear critical reinforced concrete frames and walls under monotonic loading |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 17 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.471 در سال 2020 |
شاخص H_index | 141 در سال 2020 |
شاخص SJR | 1.567 در سال 2020 |
شناسه ISSN | 0141-0296 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی عمران |
گرایش های مرتبط | سازه، مدیریت ساخت |
نوع ارائه مقاله |
ژورنال |
مجله | سازه های مهندسی – Engineering Structures |
دانشگاه | Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Sri Lanka |
کلمات کلیدی | فرمول بندی المان محدود مبتنی بر نیرو، اندرکنش لحظه ای-برشی-محوری، پاسخ استاتیکی غیرخطی، برش قاب های بتن مسلح بحرانی |
کلمات کلیدی انگلیسی | Force based finite element formulation – Moment-shear-axial interaction – Nonlinear static response – Shear critical reinforced concrete frames |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.engstruct.2021.113483 |
کد محصول | E15842 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords Introduction Proposed formulation Constitutive model Experimental database Results and discussion Summary of the experimental validation Conclusions CRediT authorship contribution statement Declaration of Competing Interest Appendix A. References |
بخشی از متن مقاله: |
Abstract This paper focuses on a novel finite element formulation which can predict the bending moment-shear force-axial force interaction of reinforced concrete frames and walls, and validate it against 170 experiments available in literature. This distributed plasticity element is established on force-based finite element method, where the relationship between element nodal forces and section forces are exactly known. Hence, element discretization is nonessential when modelling frames using this formulation, reducing the number of degrees of freedom in the numerical model compared to displacement-based formulations. The computations are carried out at four hierarchical levels, namely structure, element, section and fibre. There are two nested iterative procedures at the structure level and the section level. In the existing formulation, these iterative procedures are computationally demanding due to use of initial stiffness matrices. Furthermore, it uses Modified Compression Field Theory at the fibre level, which has inherent drawbacks compared to its more evolved version, the Disturbed stress Field Model. The current study refines the iterative procedures at structure and section levels to fully operate with tangent stiffness matrices to improve the speed of convergence. In addition, the Modified Compression Field Theory is replaced with the Disturbed stress Field Model at the fibre level to compute fibre resisting force for a given fibre deformation, accounting for both averaged behaviour and local crack slip. The novel element is validated by comparing the predicted results with experimental results of 170 tests found in the literature. It is shown that the novel element predicts the load carrying capacity well with an average experimental-to-predicted load carrying capacity ratio of 0.99 and a coefficient of variation of 12.8%. Furthermore, the element can be used to discuss the different failure mechanisms of reinforced concrete frame elements. Introduction Developing a robust, rational and computationally efficient numerical tool to perform nonlinear analyses of reinforced concrete (RC) frames accounting for bending moment-shear force-axial force (M-V-N) interaction is a challenging problem. Modelling RC frames with fibre beam-column elements have become popular over the years owing to its balanced accuracy of prediction and computational efficiency. The relationship between nodal forces and nodal deformations of such elements can be derived using displacement-based [1–4], force-based or mixed finite element methods [5–7]. Among these methods, force-based finite element method is preferred to be used with fibre beam-column elements as it waives the need for element discretization owing to the exactly known force interpolation functions [8–18]. |