مشخصات مقاله | |
ترجمه عنوان مقاله | ارزیابی یادگیری فدرال برای تشخیص نفوذ در اینترنت اشیا: بررسی و چالش ها |
عنوان انگلیسی مقاله | Evaluating Federated Learning for intrusion detection in Internet of Things: Review and challenges |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 16 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.474 در سال 2020 |
شاخص H_index | 135 در سال 2020 |
شاخص SJR | 0.798 در سال 2020 |
شناسه ISSN | 1389-1286 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر، مهندسی فناوری اطلاعات |
گرایش های مرتبط | اینترنت و شبکه های گسترده، امنیت اطلاعات، شبکه های کامپیتری |
نوع ارائه مقاله |
ژورنال |
مجله | شبکه های کامپیوتری – Computer Networks |
دانشگاه | University of Murcia, Department of Information and Communication Engineering, Spain |
کلمات کلیدی | اینترنت اشیا، یادگیری فدرال، سیستم های تشخیص نفوذ |
کلمات کلیدی انگلیسی | Internet of Things – Federated Learning – Intrusion detection systems |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.comnet.2021.108661 |
کد محصول | E15958 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords Introduction FL-enabled IDS for IoT scenarios Related work Methodology Evaluation results Challenges and research directions Conclusions CRediT authorship contribution statement Declaration of Competing Interest Acknowledgments References |
بخشی از متن مقاله: |
Abstract The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection process. In the context of the Internet of Things (IoT), most ML-enabled IDS approaches use centralized approaches where IoT devices share their data with data centers for further analysis. To mitigate privacy concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems. However, the development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas, in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are obtained by partitioning the recent ToN_IoT dataset according to IoT devices’ IP address and types of attack. Furthermore, we evaluate the impact of different aggregation functions according to such setting by using the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results. Introduction Nowadays, the constant development and deployment of Internet of Things (IoT) technologies is increasing the attack surface of physical devices that could be potentially exploited by malicious entities [1]. Well-known attacks, such as the Mirai botnet and recent variants [2], demonstrate the need to strengthen IoT devices’ security in order to protect large-scale IoT-enabled systems. Due to the development of such increasingly sophisticated attacks, in recent years the use of machine learning (ML) techniques has been widely considered for the detection and mitigation of these attacks in IoT scenarios. Indeed, the application of ML techniques has been proposed in recent works to improve the detection capabilities of the well-known intrusion detection systems (IDS) through the application of diverse techniques (e.g., neural networks) to infer potential attacks based on the analysis of network traffic [3]. Despite the advantages provided by the application of ML techniques to enhance IDS approaches (e.g., in terms of attack detection accuracy), most of such ML-enabled IDS deployments arecentralized, so that a single entity receives the network traffic data from different devices to train a certain ML model. Therefore, this entity has access to the whole network traffic derived from the communication of the different devices participating in the training process and also devices’ local data, which could lead to privacy issues. This problem could be exacerbated in IoT scenarios due to the amount and sensitivity of the information exchanged through certain devices, such as wearable or eHealth systems [4]; therefore, decentralized data management solutions are of paramount importance [5]. |