مشخصات مقاله | |
ترجمه عنوان مقاله | پیش بینی های مالی بلندمدت بر اساس انتگرال های مسیر فاینمن- دیراک، شبکه های بیزی عمیق و شبکه های مولد رقابتی زمانی |
عنوان انگلیسی مقاله | Long-term financial predictions based on Feynman–Dirac path integrals, deep Bayesian networks and temporal generative adversarial networks |
انتشار | مقاله سال 2022 |
تعداد صفحات مقاله انگلیسی | 23 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
شناسه ISSN | 2666-8270 |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر و اقتصاد |
گرایش های مرتبط | اقتصاد مالی، اقتصاد پولی، هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله | یادگیری ماشین با کاربردهای آن – Machine Learning with Applications |
دانشگاه | Department of Mechanical Engineering, University of Ottawa, Canada |
کلمات کلیدی | شبکه متخاصم مولد موقت، سری های زمانی، پیش بینی های مالی، حافظه کوتاه مدت، شبکه کانولوشن زمانی |
کلمات کلیدی انگلیسی | Temporal generative adversarial network – time series – financial predictions – long short-term memory – temporal convolutional network |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.mlwa.2022.100255 |
کد محصول | E15978 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords Financial path prediction using stochastic equations and the Feynman–Dirac path integral Deep Bayesian neural network for predicting drift and the volatility Generating financial trajectories with a temporal GAN GAN architectures Experimental results Summary and conclusions CRediT authorship contribution statement Declaration of Competing Interest Acknowledgement References |
بخشی از متن مقاله: |
Abstract This paper presents a new deep learning framework, QuantumPath, for long-term stock price prediction, which is of great significance in portfolio management and risk mitigation, especially when the market becomes volatile due to unpredictable circumstances such as a pandemic. Our approach is based on stochastic equations, the Feynman–Dirac path integral, deep Bayesian networks, and temporal generative adversarial neural networks (tGAN). The expected financial trajectory is evaluated with a Feynman–Dirac path integral. The latter involves summing all possible financial trajectories that could have been taken by the financial instrument. These trajectories are generated with a t-GAN. A probability is attributed to each point of each path. The probability is a function of the Lagrangian, which is derived from a stochastic equation describing the temporal evolution of the stock. The drift and the volatility at each point, which are required in order to evaluate the Lagrangian, are predicted with a deep Bayesian neural network. Given that the evolution of a stock’s price is isomorphic to a time series, our temporal GAN consists of long short-term memory (LSTM) neural networks, which introduce a memory mechanism, and temporal convolutional neural networks (TCN), which ensure causality. Stock prices are predicted over periods of twenty and thirty days for nine stocks, eight of which are included in the S&P 500 index. Our experimental results clearly demonstrate the efficiency of our approach. The stock market is known for its erratic behaviour (Ziemba et al., 2017) with a 2020 episode resulting from the pandemic (Zhang et al., 2020; Ashraf, 2020). During the first quarter of 2020, while numerous companies experienced a sharp decline in their value, others such as Amazon, Walmart, and Tesla were sharply rising. As a result, those who invested in these companies prior to the pandemic made substantial profits while others suffered heavy losses (Nicola et al., 2020). In such contexts, stock price prediction may contribute to improving the return on investment while also mitigating the risks associated with uncertainty (Zhou et al., 2018). Generative models have the ability to learn the probability density function associated with a dataset (e.g., audio and images) (Lucic et al., 2018) while the posterior distribution may be inferred from discriminative models (Ulusoy & Bishop, 2006). Generative adversarial networks (GAN) are generative models that were first introduced by (Goodfellow et al., 2014). They aim to generate synthetic data with the same probability distribution function as the training dataset. They consist of a generator that produces synthetic data and a discriminator, which evaluates the discrepancy between the synthetic data and the real data. |