مقاله انگلیسی رایگان در مورد توصیف شبکه های عصبی با شبکه های عصبی – MDPI 2022

مقاله انگلیسی رایگان در مورد توصیف شبکه های عصبی با شبکه های عصبی – MDPI 2022

 

مشخصات مقاله
ترجمه عنوان مقاله توصیف شبکه های عصبی با شبکه های عصبی
عنوان انگلیسی مقاله Explanations for Neural Networks by Neural Networks
انتشار مقاله سال ۲۰۲۲
تعداد صفحات مقاله انگلیسی  ۱۴ صفحه
هزینه  دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده  نشریه MDPI
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) JCR – Master Journal List – Scopus – DOAJ
نوع مقاله
ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۳٫۰۲۱ در سال ۲۰۲۰
شاخص H_index ۵۲ در سال ۲۰۲۱
شاخص SJR ۰٫۴۳۵ در سال ۲۰۲۰
شناسه ISSN ۲۰۷۶-۳۴۱۷
شاخص Quartile (چارک) Q2 در سال ۲۰۲۰
فرضیه ندارد
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط هوش مصنوعی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس علوم کاربردی – Applied Sciences
دانشگاه University of Mannheim, Mannheim, Germany
شناسه دیجیتال – doi https://doi.org/10.3390/app12030980
کد محصول E16133
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:

Abstract

Supplementary Material

Open Access and Permissions

Share and Cite

Article Metrics

Order Article Reprints

بخشی از متن مقاله:

Abstract

Understanding the function learned by a neural network is crucial in many domains, e.g., to detect a model’s adaption to concept drift in online learning. Existing global surrogate model approaches generate explanations by maximizing the fidelity between the neural network and a surrogate model on a sample-basis, which can be very time-consuming. Therefore, these approaches are not applicable in scenarios where timely or frequent explanations are required. In this paper, we introduce a real-time approach for generating a symbolic representation of the function learned by a neural network. Our idea is to generate explanations via another neural network (called the Interpretation Network, or I-Net), which maps network parameters to a symbolic representation of the network function. We show that the training of an I-Net for a family of functions can be performed up-front and subsequent generation of an explanation only requires querying the I-Net once, which is computationally very efficient and does not require training data. We empirically evaluate our approach for the case of low-order polynomials as explanations, and show that it achieves competitive results for various data and function complexities. To the best of our knowledge, this is the first approach that attempts to learn mapping from neural networks to symbolic representations.

۱٫ Introduction

The ability of artificial neural networks to act as general function approximators has led to impressive results in many application areas. However, the price for this universal applicability is the limited interpretability of the trained model. Overcoming this limitation is a subject of active research in the machine learning community [1]. Popular approaches for explaining the results of neural networks such as LIME [2], SHAP [3], or LRP [4] focus on the impact of different attributes on the predictions of the model for certain examples. While this provides a partial explanation for individual examples, it does not shed a light on the complete network function. Especially when dealing with streaming data, uncovering the network function is very important, e.g., for detecting the adjustment of a model to concept drift or for the identification of catastrophic forgetting.

While there are existing approaches for constructing a compact representation of the network function (such as symbolic metamodeling [5] and symbolic regression [6], for instance), they generate their explanations on a sample-basis. Generating explanations through maximizing the fidelity to the neural network on a sample-basis means that the optimization process for finding a suitable explanation must be performed independently for each model we want to interpret. Since this optimization process is usually very time-consuming, it precludes the application of this method in scenarios where timely explanations are required. Furthermore, they require access to the training data, or at least knowledge of its distribution [7]

ثبت دیدگاه