مقاله انگلیسی رایگان در مورد طرح تولید هوشمند با اینترنت اشیا و یادگیری ماشینی – تیلور و فرانسیس 2022

 

مشخصات مقاله
ترجمه عنوان مقاله مدل کسب و کار تولید هوشمند با اینترنت اشیا و یادگیری ماشینی
عنوان انگلیسی مقاله The business model of intelligent manufacturing with Internet of Things and machine learning
انتشار  مقاله سال 2022
تعداد صفحات مقاله انگلیسی  19 صفحه
هزینه  دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده  نشریه تیلور و فرانسیس – Taylor & Francis
نوع نگارش مقاله مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) JCR – Master Journal List – Scopus
نوع مقاله
ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
5.121 در سال 2020
شاخص H_index 50 در سال 2022
شاخص SJR 0.868 در سال 2020
شناسه ISSN 1751-7583
شاخص Quartile (چارک) Q1 در سال 2020
فرضیه ندارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مدیریت – مهندسی کامپیوتر – مهندسی فناوری اطلاعات
گرایش های مرتبط هوش مصنوعی – مهندسی نرم افزار – اینترنت و شبکه های گسترده – مدیریت کسب و کار
نوع ارائه مقاله
ژورنال
مجله / کنفرانس سیستم های اطلاعات سازمانی – Enterprise Information Systems
دانشگاه School of Economics and Management, Xidian University, China
کلمات کلیدی مدل کسب و کار – تولید هوشمند – اینترنت اشیا – یادگیری ماشینی – شبکه عصبی
کلمات کلیدی انگلیسی  Business model – intelligent manufacturing – Internet of Things – machine learning – neural network
شناسه دیجیتال – doi https://doi.org/10.1080/17517575.2020.1722253
کد محصول e16615
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:

Abstract

1. Introduction

2. Literature review

3. The business model of intelligent manufacturing under the environment of the Internet of Things and machine learning

4. The feasibility analysis of artificial intelligent neural network algorithm in the business model of intelligent manufacturing

5. Conclusions

Disclosure statement

References

 

بخشی از متن مقاله:

Abstract

     To establish a business model of intelligent manufacturing, the sequence Generative Adversarial Network (SeqGAN) was used to optimise the Back Propagation (BP) neural network algorithm improved by multi-objective Genetic Algorithm to propose the sequence Generative Adversarial Network-Genetic Algorithm Back Propagation Algorithm (SeqGAN-GABP). Meanwhile, the Elman algorithm was optimised by the SeqGAN model to propose the SeqGAN-Elman algorithm. The algorithms were constructed and trained and were applied to the Internet of Things platforms. The results showed that the SeqGAN-GABP algorithm outperforms the SeqGAN-Elman algorithm in terms of minimal error, fitting accuracy, training time and internal memory usage.

Introduction

     At present, the domestic and foreign manufacture industries are moving towards an intelligent and digital era, and the influence of intelligent manufacturing on various aspects of manufacture industry is also growing (Peng and Gao 2017; Mousavi et al. 2017). Doubtlessly, it is the developing direction of the automatic manufacture for intelligent manufacturing. The intelligent manufacturing system judges and plans its own behaviour by collecting and analysing its own information and environmental information and enriches the knowledge base in the practice process (Li et al. 2018). Business model refers to various transaction relationships and connection methods between enterprises and enterprises, between departments and departments, between enterprises and customers, and between enterprises and channels (Kaulio, Thorén, and Rohrbeck 2017). A business model is a conceptual tool that contains a set of elements and their relationships to illustrate the business logic of a particular entity (Ding et al. 2017). It describes the value that a company can provide to its customers, as well as the internal structure, partner network, and relationship capital of the company to achieve (create, market, and deliver) this value and generate sustainable profits (Yun, Won, and Park 2017).

Conclusions

     Through the business model of intelligent manufacturing based on IoT and machine learning, the artificial neural network algorithm and the IoT platform have reliability in the business model of intelligent manufacturing, which could improve the development of the business model of intelligent manufacturing, facilitate the user interaction and business development, and have broad application prospects. However, in the actual application process, relevant analysts should cooperate and coordinate based on the actual problems to clarify the analysis objectives and feasibility of machine learning. However, there were also deficiencies in the research process. For example, the machine learning model established in this study needs to manually evaluate the underlying indicators. In the subsequent research, the underlying indicators can be judged by computer vision, thereby gradually eliminating the stage of manual data input and evaluation. The scale of the network scale fails to adapt to the background of big data. In the future, the feature vector of the evaluation system model can be raised to high-dimensional space, while the high-dimensional low-level features are extracted through the deep learning network and compressed to low-dimensional advanced features. Therefore, network performance needs to be improved through machine learning. In addition, the innovation and reconstruction of business models involve all aspects of the industry. The distribution of interest by different companies and the better integration of industry resources are also a major obstacle to the implementation of an industrial blockchain.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا