مقاله انگلیسی رایگان در مورد توازن در مدل سازی شبکه های عصبی – تیلور و فرانسیس ۲۰۲۲
مشخصات مقاله | |
ترجمه عنوان مقاله | ویژگی تعادل در مدل سازی شبکه های عصبی |
عنوان انگلیسی مقاله | The balance property in neural network modelling |
انتشار | مقاله سال ۲۰۲۲ |
تعداد صفحات مقاله انگلیسی | ۹ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه تیلور و فرانسیس – Taylor & Francis |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus |
نوع مقاله |
ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۰٫۳۰۲ در سال ۲۰۲۰ |
شاخص H_index | ۵ در سال ۲۰۲۲ |
شاخص SJR | ۰٫۲۴۷ در سال ۲۰۲۰ |
شناسه ISSN | ۲۴۷۵-۴۲۷۷ |
شاخص Quartile (چارک) | Q4 در سال ۲۰۲۰ |
فرضیه | ندارد |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر – مهندسی صنایع |
گرایش های مرتبط | هوش مصنوعی – لجستیک و زنجیره تامین |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | نظریه آماری و رشته های مرتبط – Statistical Theory and Related Fields |
دانشگاه | Department of Mathematics, ETH Zurich, Switzerland |
کلمات کلیدی | ویژگی تعادل – بی طرفانه – طبقه بندی باینری – رگرسیون لجستیک – شبکه عصبی – درخت طبقه بندی |
کلمات کلیدی انگلیسی | Balance property – unbiased – binary classification – logistic regression – neural network – classification tree |
شناسه دیجیتال – doi | https://doi.org/10.1080/24754269.2021.1877960 |
کد محصول | e16624 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract ۱٫ Introduction ۲٫ Logistic regression ۳٫ Neural network regressions and early stopping ۴٫ Global bias regularisation ۵٫ Example ۶٫ Conclusions Notes on contributor References |
بخشی از متن مقاله: |
Abstract In estimation and prediction theory, considerable attention is paid to the question of having unbiased estimators on a global population level. Recent developments in neural network modelling have mainly focused on accuracy on a granular sample level, and the question of unbiasedness on the population level has almost completely been neglected by that community. We discuss this question within neural network regression models, and we provide methods of receiving unbiased estimators for these models on the global population level. Introduction In recent years, neural networks have become state-of-the-art in all kinds of classification and regression problems. Snapshots of their history and their success are illustrated in LeCun et al. (2015) and Schmidhuber (2015). Their popularity is largely based on the facts that they offer much more modelling flexibility than classical statistical regression models (such as generalised linear models) and that increasing computational power combined with effective training methods have become available, see Rumelhart et al. (1986). Neural networks outperform many other classical statistical approaches in terms of predictive performance on an individual sample level, they allow to include unstructured data such as texts into the regression models, see Lee et al. (2020) for a word embedding example, and they allow for solving rather unconventional regression problems, see Cheng et al. (2020) and Gabrielli (2020) for examples. Therefore, our community has gradually been shifting from a data modelling culture to an algorithmic modelling culture, we refer the reader to Breiman (2001) and Shmueli(2010). Conclusions We have discussed the important problem of considering statistical models that provide unbiased mean estimates on a global population level (balance property). Classical statistical regression models like generalised linear model naturally have this balance property under the canonical link choice because the maximum likelihood estimator provides a critical value of the corresponding optimisation problem. In general, early stop gradient-descent calibrated neural networks fail to have the balance property, because early stopping prevents these models from taking parameters in critical points of the (deviance) loss function. In many applications, this does not reflect a favourable model calibration because it may lead to substantial price misspecification on a global population level. Therefore, we have proposed improvements that lead to globally unbiased solutions. These solutions include an additional generalised linear model optimisation step or shrinkage regularisation to empirical averages. The numerical example shows that we prefer the additional generalized linear model optimisation step. |