مقاله انگلیسی رایگان در مورد عملکرد کیسون های مکش توربین بادی و روش ساده شده برای مدل سازی لرزه ای – الزویر ۲۰۲۲
مشخصات مقاله | |
ترجمه عنوان مقاله | روش ساده شده برای طراحی لرزه ای مبتنی بر عملکرد ارابه های مکش پشتیبان ژاکت توربین های بادی فراساحلی |
عنوان انگلیسی مقاله | Simplified method for performance-based seismic design of suction caissons supporting jacket offshore wind turbines |
انتشار | مقاله سال ۲۰۲۲ |
تعداد صفحات مقاله انگلیسی | ۲۳ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journal List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۴٫۵۴۳ در سال ۲۰۲۰ |
شاخص H_index | ۱۰۹ در سال ۲۰۲۲ |
شاخص SJR | ۱٫۴۲۶ در سال ۲۰۲۰ |
شناسه ISSN | ۰۲۶۷-۷۲۶۱ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۲۰ |
فرضیه | ندارد |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی عمران – مهندسی انرژی |
گرایش های مرتبط | سازه – خاک و پی – زلزله – فناوری های انرژی |
نوع ارائه مقاله |
ژورنال |
مجله | دینامیک خاک و مهندسی زلزله – Soil Dynamics and Earthquake Engineering |
دانشگاه | Chair of Geotechnical Engineering, ETH Zurich, Switzerland |
کلمات کلیدی | کیسون های مکش – ساختار ژاکت – مدل سازی FE – مدل های مبتنی بر وینکلر – تحلیل ابعادی – زلزله |
کلمات کلیدی انگلیسی | Suction caissons – Jacket structure – FE modelling – Winkler-based models – Dimensional analysis – Earthquake |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.soildyn.2022.107169 |
کد محصول | e16740 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract ۱٫ Introduction ۲٫ Detailed 3D FE modelling ۳٫ “Caisson-on-Winkler-Soil” (CWS) model ۵٫ Co-seismic caisson settlements ۶٫ Simplified approach for the preliminary assessment of permanent seismic settlements in SBJ OWTs ۷٫ A hybrid approach for the seismic assessment of SBJ OWTs ۸٫ Conclusions Author statement Declaration of competing interest Acknowledgement Appendix A. References |
بخشی از متن مقاله: |
Abstract The paper studies the performance of Offshore Wind Turbines (OWTs) founded on Suction Bucket Jackets (SBJs) in clay under combined wind and seismic loading. A detailed 3D FE model of the soil–foundation–structure (SFS) system is developed and used as a benchmark to assess the efficiency of an enhanced Winkler-based “Caisson-on-Winkler-Soil” (CWS) model, where the soil is replaced by nonlinear hysteretic elements. The proposed CWS model captures residual deformations and hysteresis and offers physical coupling between vertical and moment loading. It allows excellent prediction of the failure envelope in the most relevant first quadrant of space, where the loads act in the same direction. Despite its successful application for the simulation of inertial loading, the CWS model fails to reproduce the dual shearing mechanism that develops at the caisson shaft during shaking, stemming from the combination of kinematic soil shearing due to the vertically propagating shear waves, and shearing due to the superstructure inertial response, thus underpredicting the co-seismic caisson settlements. For the prediction of the latter, the research utilizes spectrum compatible input motions and 3D FE models of varying geometric and material properties to derive linear regression equations that correlate the co-seismic dimensionless settlement of caissons ) with characteristic dimensional variables of the problem under investigation and the Arias Intensity of the surface ground motion. As a final step, the paper proposes a hybrid method for performance-based assessment of SBJ OWTs. The proposed method employs the simplified CWS model to calculate the VHM loads and approximately estimate horizontal displacements and rotations at the jacket legs, followed by a preliminary assessment of caisson settlements using the correlations of with on the basis of spectrum-compatible input motions. Introduction Following the ambitious energy targets set by countries worldwide, the offshore wind sector has seen impressive growth over the last decade, transforming from niche technology to a global industry. As of 2019, Europe alone has 22 GW of installed offshore wind capacity – enough to cover 2.3% of its electricity consumption [1], while similar or even more potent growth is observed in many countries around the world, such as China, the USA, and India. Part of this energy transition is led by technology-driven innovation, with offshore wind turbines reaching new heights and larger capacities, while wind farms are moving deeper into the sea to harness the increased energy potential. Giventhis new “deep-water” environment, traditional OWT support structures are gradually being replaced by more cost-effective and agile foundation systems in a quest for reduction of investment costs. Conclusions The paper has developed a simplified performance-based assessment technique for SBJ OWTs founded in clay under the combined action of wind () and earthquake () loading. Using an example of an 8 MW jacket-supported OWT, installed at 60 m depth in the Adriatic Sea, system performance was assessed employing a detailed 3D FE model of the soil–foundation–structure (SFS) system (global 3D FE model). After deriving insights on system performance, the global 3D FE model was used as a benchmark to assess the efficiency of an enhanced Winkler-based “Caisson-on-Winkler-Soil” (CWS) model. Soil–suction caisson interaction is represented by nonlinear hysteretic elements, capturing residual deformations and hysteresis. The proposed CWS model offers physical coupling between vertical and moment loading by introducing distributed vertical hysteretic elements along the caisson shaft, simultaneously contributing to vertical and moment shaft resistance. |