مقاله انگلیسی رایگان در مورد آنالیز دینامیک غیرخطی ساختار خرپایی باریک انعطاف‌پذیر – IEEE 2022

مقاله انگلیسی رایگان در مورد آنالیز دینامیک غیرخطی ساختار خرپایی باریک انعطاف‌پذیر – IEEE 2022

 

مشخصات مقاله
ترجمه عنوان مقاله آنالیز دینامیک غیرخطی یک ساختار خرپایی باریک انعطاف‌پذیر بزرگ که یک دستکاری برای مونتاژ در مدار حمل می‌کند
عنوان انگلیسی مقاله Nonlinear Dynamics Analysis of a Large Flexible Slender Truss-Structure Carrying a Manipulator for On-Orbit Assembly
نشریه آی تریپل ای – IEEE
سال انتشار ۲۰۲۲
تعداد صفحات مقاله انگلیسی  ۱۶ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) JCR – Master Journal List – Scopus – DOAJ
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۴٫۳۴۲ در سال ۲۰۲۰
شاخص H_index ۱۵۸ در سال ۲۰۲۲
شاخص SJR ۰٫۹۲۷ در سال ۲۰۲۰
شناسه ISSN ۲۱۶۹-۳۵۳۶
شاخص Quartile (چارک) Q1 در سال ۲۰۲۰
فرضیه ندارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مهندسی عمران
گرایش های مرتبط سازه
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی آی تریپل ای – IEEE Access
دانشگاه State Key Laboratory of Mechanical Transmission, Chongqing University, China
کلمات کلیدی مونتاژ در مدار – منیولاتور خرپایی باریک انعطاف پذیر – برانگیختگی پارامتری – روش مقیاس های چندگانه – رزونانس اولیه – رزونانس زیر هارمونیک
کلمات کلیدی انگلیسی On-orbit assembly – flexible slender truss-structure mounted manipulator – parametric excitation – method of multiple scales – primary resonance – sub-harmonic resonance
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2022.3176750
لینک سایت مرجع
https://ieeexplore.ieee.org/document/9779259
کد محصول e17113
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I Introduction
II Equations of Dynamics
III Solution Procedure
IV Numerical Results and Discussions
V Conclusion
Appendix A
References

 

بخشی از متن مقاله:

Abstract

     Nonlinear dynamic of a flexible slender truss-structure mounted manipulator for on-orbit assembly, which can be simplified as a beam–rotating link interaction system, is theoretically investigated. The governing partial differential equations (PDEs) of beam with time-varying coefficients is established by using the D’Alembert principle incorporated with the moment balance method where the beam is of a Euler–Bernoulli type and the influence of slope is considered. Such system is a typical parametrically excited system. The multiple scales method is used to determine the approximate solution and the conditions of the primary resonance ( ω۱≈ωref ) and sub-harmonic resonance ( ω۱≈ ۲ωref , ω۱≈ ۳ωref and ω۱≈ ۴ωref ) are obtained. In addition, the nonlinear response, stability and bifurcations for primary and sub-harmonic resonance conditions have also been investigated by varying system parameters. Moreover, the results of some specific conditions by the perturbation analysis are compared with the numerical solution and are found to be in good agreement. This work has certain guiding significance for autonomous on-orbit assembly task and the method can be extended to the more general three-dimensional case.

Introduction

     Future space exploration puts forward some new requirements of space structure, such as establishment of large space solar power plants to cope with energy depletion which is huge volume (from thousands of meters or even dozens of kilometers). To meet the requirements of such space missions, the space structures will be constructed too large to be launched and deployed as a whole [1]–[۵]. It is identified as one of the most appealing solutions in which the manipulator is mounted on the long truss-structures to assemble or maintain the several adjacent blocks [6]. One problem of great concern is that of low-frequency structure may be easily excited by high-frequency robotic and hardly damped out in space environment due to the low-damping characteristics of the flexible structures [2], [7]. The vibration may cause inaccuracy of manipulator positioning, and more seriously, the premature fatigue failure of flexible structure [8] and it could be reduced by improving the dynamic model of the system. Therefore, it is significant to conduct studies to apprehend dynamic characteristics of such system and find some structural parameter design criterion to minimize the vibration amplitude.

     In this paper, a typical flexible slender truss-structure mounted manipulator (FSTMM) for on-orbit assembly, as shown in Fig. 1(a), is studied. During the robot is assembling the truss structure, the robot is mounted on the long truss to assemble the next module of the truss. To focus on the fundamental issues of the dynamic problem, the long truss structure can be simplified as a flexible beam [3], [9] and only the first link of manipulator is considered. Such system is a typical beam–rotating link interaction system. A very limited work of such system has been reported. For example, the speed exclusion zone of a wind turbine, which was regarded as a typical cantilever beam structure attached with a rotating unbalanced mass, was investigated to prevent tower resonance [10]. The nonlinear dynamic behavior of a non-ideal unbalanced motor in a simple cantilever beam system was investigated and the results indicate there appears the jump phenomenon, namely the Sommerfeld effect [11], [12]. A model using RLC circuits with variable capacitance based on the saturation phenomenon is used to control the vibration of a hinged-hinged beam supporting unbalanced machine [13]. A nonlinear dynamical model of a robot manipulator consisting of a flexible cantilever beam and rigid second link is derived using a Lagrange equation and a Lyapunov-based feedback control law is then introduced to suppressing bending vibrations in the flexible link [14].

Conclusion

     Nonlinear dynamic of a flexible slender truss-structure mounted manipulator for on-orbit assembly, which can be simplified as a beam–rotating link interaction system, is theoretically investigated for primary and sub-harmonic resonance. The PDEs of system is established by using the D’Alembert principle incorporated with the moment balance method in which the slope of beam is considered. Such system is a typical parametrically excited system. The multiple scales method is used to solve the second-order ODEs which is reduced by the Galerkin’s method with a single mode approach from obtained PDEs. Then, the non-linear response, stability and bifurcations for primary and all sub-harmonic resonance conditions have been investigated by varying system parameters. By inspecting the results of this analysis, the following conclusions could be made:

     When the excitation frequency of manipulator ω۱ near equal to the linear natural frequency of flexible truss-structure ωref , there will exist simple resonance condition and only have nontrivial steady state solution. The system resonance could be classified into monostable and bistable region by saddle-node (SN) bifurcation point. The steady state responses of the system in bistable region are determined by the initial condition and a slight change of initial conditions may cause a significant change. On the other hand, increasing the level of damping, as well as decreasing the mass of rigid manipulator and installation position of manipulator close to fixed end will reduce steady state responses of beam.

ثبت دیدگاه