مقاله انگلیسی رایگان در مورد مدل بهینه سازی نمونه کار با ترکیب بهینه سازی چند هدفه و تصمیم گیری چند شاخصه – اسپرینگر 2022

 

مشخصات مقاله
ترجمه عنوان مقاله یک مدل جدید بهینه سازی نمونه کارها از طریق ترکیب بهینه سازی چند هدفه و تصمیم گیری چند شاخصه
عنوان انگلیسی مقاله A novel portfolio optimization model via combining multi-objective optimization and multi-attribute decision making
نشریه اسپرینگر
سال انتشار 2022
تعداد صفحات مقاله انگلیسی  12 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
5.442 در سال 2020
شاخص H_index 72 در سال 2022
شاخص SJR 1.211 در سال 2020
شناسه ISSN 1573-7497
شاخص Quartile (چارک) Q2 در سال 2020
فرضیه ندارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مدیریت – مهندسی صنایع – حسابداری
گرایش های مرتبط مدیریت اجرایی – بهینه سازی سیستم ها – حسابداری عمومی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس هوش کاربردی – Applied Intelligence
دانشگاه School of Science, Chongqing University of Posts and Telecommunications, China
کلمات کلیدی بهینه سازی پورتفولیو – استراتژی پراکندگی – NSGA-II موازی چند جمعیتی – میانگین C فازی – طرح ریزی رابطه خاکستری
کلمات کلیدی انگلیسی Portfolio optimization – Sparsity strategy – Multi-population parallel NSGA-II – Fuzzy C-means – Grey relational projection
شناسه دیجیتال – doi
https://doi.org/10.1007/s10489-021-02747-y
لینک سایت مرجع
https://link.springer.com/article/10.1007/s10489-021-02747-y
کد محصول e17138
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1 Introduction
2 Model building
3 Model solving
4 Empirical analysis
5 Conclusion
Compliance with Ethical Standards
References

 

بخشی از متن مقاله:

Abstract

     In order to solve the problem of portfolio optimization, this paper proposes a method that combines multi-objective optimization and multi-attribute decision-making to solve the dual-objective portfolio optimization model with conditional value-at-risk (CVaR) measuring risk and including transaction costs. First, in the multi-objective optimization stage, a multi-population parallel NSGA-II based on sparsity strategy (SMP-NSGA-II) is proposed to obtain multiple Pareto optimal solutions of the model. Second, in the multi-attribute decision-making stage, in order to reflect different investment preferences, the Pareto optimal set obtained is clustered through the fuzzy C-means, and then the grey relational projection method is used to evaluate the solutions belonging to the same cluster to select the optimal compromise solution. Finally, a case study of 9 semiconductor stocks in China’s Shanghai and Shenzhen stock markets is carried out, and the optimal compromise portfolio under different investment preferences is given. At the same time, the proposed algorithm is compared with the other six multi-objective evolutionary algorithms (MOEAs), which verifies that the algorithm in this paper has certain competitiveness.

Introduction

     Nowadays, in the field of securities investment, the indicators used to quantify risk mainly include value-atrisk (VaR) and conditional value-at-risk (CVaR). Among them, VaR is represented by nonlinear, non-convex and nondifferentiable function with multiple local optima, making it difficult to calculate. To solve these problems, Rockafellar et al. [1] introduced the CVaR, which is a coherent risk measure that considers risk as the most serious loss in a given scenario, taking into account a certain degree of confidence. Since CVaR is a convex function, it can effectively solve the optimization problem that uses CVaR as a minimization goal or constraint [2, 3]. At the same time, Yu et al. [4] compared five different risk models and verified through experiments that using CVaR to measure risk is a good choice.

     As the complexity of practical applications continues to increase, scholars have developed various heuristic algorithms to solve portfolio optimization problems. The application of heuristic algorithms in portfolio optimization problems is divided into two categories. The first category simplifies portfolio objectives through the setting of weight coefficients [5–7], and obtains a risk-return curve by continuously changing the risk avoidance parameters of representative investors. This method has a certain degree of subjectivity. The second type uses multi-objective evolutionary algorithm (MOEA) to directly optimize risks and benefits simultaneously [8–11], and can obtain a complete effective frontier in one operation. Obviously, it is more convenient to use MOEAs to solve portfolio optimization problems.

Conclusion

     In order to solve the dual-objective portfolio optimization model with conditional value-at-risk (CVaR) as a measure of risk and including transaction costs, this paper proposes a method combining multi-objective optimization and multi-attribute decision-making. In the multi-objective optimization stage, this paper proposes a multi-population parallel NSGA-II based on sparsity strategy (SMP-NSGAII). In the case studies of 9 stocks in the semiconductor industry, we compared SMP-NSGA-II with the other six MOEAs through two performance evaluation indicators (HV and SP) and running time, then verified the feasibility of the SMP-NSGA-II algorithm. In the multi-attribute decision-making stage, this paper adopts the FCM-GRP hybrid method to give the optimal compromise investment portfolio under different DM preferences.

     There are a couple of drawbacks in the present study. Firstly, the model studied in this paper is relatively simple and does not take into account the many unstable factors of the real securities market; Secondly, the space complexity of the proposed SMP-NSGA-II algorithm is also high.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا