دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی زیست شناسیدانلود رایگان مقالات پژوهشی کامپیوتردانلود رایگان مقالات ژورنالی زیست شناسیدانلود رایگان مقالات ژورنالی کامپیوتردانلود رایگان مقالات سال 2022دانلود رایگان مقاله ISI زیست شناسی به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI علوم گیاهی به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI هوش مصنوعی به زبان انگلیسیدانلود رایگان مقاله ISI یادگیری عمیق به زبان انگلیسیدانلود رایگان مقاله ISI یادگیری ماشین به زبان انگلیسیسال انتشار

مقاله انگلیسی رایگان در مورد مرور جامع تشخیص بیماری گیاهان – الزویر ۲۰۲۲

 

مشخصات مقاله
ترجمه عنوان مقاله بررسی جامع درباره تشخیص بیماری گیاهان با استفاده از رویکردهای یادگیری ماشین و یادگیری عمیق
عنوان انگلیسی مقاله A comprehensive review on detection of plant disease using machine learning and deep learning approaches
انتشار مقاله سال ۲۰۲۲
تعداد صفحات مقاله انگلیسی ۱۰ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – DOAJ
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۰٫۸۳۳ در سال ۲۰۲۰
شاخص H_index ۲ در سال ۲۰۲۲
شاخص SJR ۰٫۱۹۵ در سال ۲۰۲۰
شناسه ISSN ۲۶۶۵-۹۱۷۴
شاخص Quartile (چارک) Q3 در سال ۲۰۲۰
فرضیه ندارد
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر – زیست شناسی
گرایش های مرتبط هوش مصنوعی – علوم گیاهی
نوع ارائه مقاله
ژورنال
مجله  سنجش: حسگرها – Measurement: Sensors
دانشگاه  Panimalar Engineering College, Tamilnadu, India
کلمات کلیدی کشاورزی، تشخیص بیماری گیاهان، روش های یادگیری ماشین، هوش مصنوعی، و یادگیری عمیق
کلمات کلیدی انگلیسی Agriculture, Plant diseases detection, Machine learning methods, Artificial intelligence, And deep learning
شناسه دیجیتال – doi
https://doi.org/10.1016/j.measen.2022.100441
کد محصول e17188
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Plant disease detection using machine learning techniques
۳٫ Logistic regression (LR)
۴٫ Artificial intelligence and deep learning based plant disease detection
۵٫ Convolution neural network (CNN)
۶٫ Comparative review on machine and deep learning techniques
۷٫ Conclusion
CRediT authorship contribution statement
Declaration of Competing interest
References

بخشی از متن مقاله:

Abstract

     Agriculture plays a significant part in India due to their population growth and increased food demands. Hence, there is a need to enhance the yield of crop. One of these important effects on low crop yields is diseases caused by bacteria, fungi and viruses. This can be prevented and handled by means of applying plant disease detection approaches. Machine learning techniques will be employed in the process of disease identification on plants as it mostly applies information themselves and offers fabulous techniques for detection of plant diseases. Methods based on Machine learning can be employed for the identification of diseases because it mainly applies on data superiority outcomes for specified task. In this approach, a comprehensive review has been made on the various techniques employed in plant disease detection using artificial intelligence (AI) based machine learning and deep learning techniques. Likewise, deep learning has also gained a great deal of significance in offering better performance outcome for detecting plant disease in the computer vision field. The deep learning advancements were employed to a range of domains that leads to great attainment in the machine learning and computer vision areas. The comparative study is made in terms of machine and deep learning techniques and their performance and usage in various research papers is related to show the effectiveness of deep learning model over machine learning model. In order to prevent major crop losses, the deep learning technique can be used to detect the leaf diseases from captured images.

Introduction

     The advancements of IoT, AI and the Unmanned Aerial Vehicles are integrated together to provide the support to agricultural fields to detect the plant leaf diseases and report that properly to the respective individuals with proper accuracy ranges. In this modern civilization, nobody is interested in farming and agriculture due to the hurdles the farmers are facing every day. So, that all young generation people are switch over their residence to modern cities to lead a safe life and avoid such agriculture field hurdles. The issue of the proficient plant diseases protection is closely linked to viable change in climate and agriculture [13]. Studies show that climate change may vary pathogenic stages and rates; host resistance may also be altered, leading to physiological variations in host-pathogen co-operations [23]. The actuality that nowadays, diseases more freely transferred around the globe than ever before complicates the situation. New diseases may occur where they have not been identified previously and, inherently, where local expertise to combat them is not available [27] (see Table 1).

Conclusion

     An extensive research study is conceded out on various kinds of machine and deep learning techniques for plant disease recognition and classification. After this, other techniques of classification in machine learning might be employed for may be used for plants disease detection and in the intellect of aiding the farmers an automatic disease detection of all kinds of disease in the crop that were to be detected. This analysis discusses various approaches of DL for the plant diseases detection. Furthermore, several techniques/mappings were summarized for recognizing the disease symptoms. Here the development of deep learning technologies in recent years for the identification of plant leaf diseases. We anticipate that this work will be a useful tool for scientists looking into plant disease detection. Also, a comparative study is also made between machine and deep learning techniques. Though a great deal of noteworthy progress was noticed in recent years, there were still some research gaps that should be addressed and to implement effective techniques for plant disease detection.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا