مقاله انگلیسی رایگان در مورد پیش‌بینی تغییرات حقوق غیرکشاورزی بین سال‌های 2008 و 2020 و تأثیر شوک کووید-19 – الزویر 2022

 

مشخصات مقاله
ترجمه عنوان مقاله موافقید مخالف باشید؟ پیش‌بینی تغییرات حقوق و دستمزد غیرکشاورزی ایالات متحده بین سال‌های 2008 و 2020 و تأثیر شوک کار COVID19
عنوان انگلیسی مقاله Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock
نشریه الزویر
انتشار مقاله سال 2022
تعداد صفحات مقاله انگلیسی 23 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journal List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
1.869 در سال 2020
شاخص H_index 122 در سال 2022
شاخص SJR 1.107 در سال 2020
شناسه ISSN 0167-2681
شاخص Quartile (چارک) Q1 در سال 2020
فرضیه ندارد
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط اقتصاد – مدیریت – مهندسی کامپیوتر
گرایش های مرتبط اقتصاد نظری – مدیریت بازرگانی – هوش مصنوعی
نوع ارائه مقاله
ژورنال
مجله  مجله رفتار اقتصادی و سازمان – Journal of Economic Behavior & Organization
دانشگاه Queen’s Management School, Queen’s University Belfast, UK
کلمات کلیدی استخدام – پیش بینی – یادگیری ماشینی – داده های نظرسنجی – COVID19
کلمات کلیدی انگلیسی Employment – Forecasting – Machine learning – Survey data – COVID19
شناسه دیجیتال – doi
https://doi.org/10.1016/j.jebo.2021.11.028
لینک سایت مرجع https://www.sciencedirect.com/science/article/pii/S0167268121005011
کد محصول e17248
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1 Introduction
2 Literature review
3 Data
4 Methodology
5 Findings
6 Concluding remarks
Declaration of Competing Interest
Appendix A
Appendix B
Appendix C
References

بخشی از متن مقاله:

Abstract

     We analyze an unbalanced panel of monthly predictions of nonfarm payroll (NFP) changes between January 2008 and December 2020 sourced from Bloomberg. Unsurprisingly, we find that prediction quality varies across economists and we reject the hypothesis of equal predictive ability. In an error decomposition, we find evidence of significantly biased forecasts. Participation rate in the survey is affecting this bias. We find that survey participants under-predict job losses in times of market turmoil while also under-predicting the recovery thereafter, especially during the COVID19 labor shock. For prediction of NFP changes, autoregressive models are outperformed by a deep learning long short-term memory network. However, the consensus forecast yields better forecasts than model-based approaches and are further improved by combining the forecasts of the best performing economists. The COVID19 labor shock is shown to have adverse effects on the prediction performance of economists. However, not all economists are affected equally.

Introduction

     Nonfarm payroll (NFP) figures and monthly changes thereof are important and immediate indicators of the development of the economy in the U.S., particularly the labor market itself. Published by the Bureau of Labor Statistics (BLS) on a monthly basis, nonfarm payroll represents the number of payroll jobs and its month-to-month changes. The NFP covers most of the non-agricultural industry contributing roughly 80% of the GDP. As such, the monthly development in the labor market is an important precursor to the development and publication of other macroeconomic variables. Monthly NFP releases cause short- and medium term reactions to stock, bond, and FX markets which is documented in literature (Fleming, Remolona, 1999, Dungey, McKenzie, Smith, 2009, Dungey, Hvozdyk, 2012). The released numbers are perceived with a signaling effect, in particular when released numbers exceed or fall short of (market) expectations. Measuring and correctly quantifying these expectations—as for any micro- or macroeconomic variable—are of relevance in view of their impact and more importantly, their economic implications.

Concluding remarks

     We analyze an unbalanced panel of nonfarm payroll predictions from January 2008 to December 2020 from 181 forecasters. Based on the framework of Davies and Lahiri (1995), we decompose the forecasting error of each forecaster into three components, of which two are further studied. Firstly, we focus on the temporal shock component that affects all forecasters equally per forecasting period. These shocks, a general over- or under-prediction of all forecasters for a particular month represents a news effect where an under-prediction of job increases is considered a positive shock and vice versa. From these estimated shocks, we find that the sample of predicting economists under-estimate job losses in times of prolonged market turmoil. In addition, recovery phases are under-predicted as well, leading to positive shocks.

     In general, we find that the mean predictions are rather stable, causing the shock estimate to alternate regularly. Secondly, we focus on the individual bias, which describes a systematic over- or under-prediction of a particular forecaster. We find the bias of several forecasters to be statistically significant. More importantly, we find that with increasing participation rate, the individual bias is decreasing, yielding a lower prediction error. This indicates that economists that regularly make predictions are incorporating differing information sets than those with very few predictions. If we decompose the forecast errors based on a more precise measure for job market figures, the most recent publication, we observe a downward shift and a generally negative bias, underlining a tendency to under-predict true or more precise values of NFP changes. This suggests that forecasters make limited use of subsequent revisions of NFP changes and their focus remains on the initial and preliminary numbers. In view of the applied framework, we find that the impact of these revisions affects the temporal shock to a lesser extent than the individual bias.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا