مشخصات مقاله | |
ترجمه عنوان مقاله | یک بستر ساده تست پایتون برای الگوریتم های یادگیری فدرال |
عنوان انگلیسی مقاله | A Simple Python Testbed for Federated Learning Algorithms |
نشریه | آی تریپل ای – IEEE |
سال انتشار | 2023 |
تعداد صفحات مقاله انگلیسی | 6 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | برنامه نویسی کامپیوتر – هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | Zooming Innovation in Consumer Technologies Conference – بزرگنمایی نوآوری در کنفرانس فناوری مصرف کننده |
دانشگاه | University of Novi Sad, Serbia |
کلمات کلیدی | سیستم های توزیع شده، رایانش لبه، هوش غیرمتمرکز، یادگیری فدرال، پایتون |
کلمات کلیدی انگلیسی | distributed systems, edge computing, decentralized intelligence, federated learning, Python |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ZINC58345.2023.10173859 |
لینک سایت مرجع |
https://ieeexplore.ieee.org/document/10173859 |
کد محصول | e17543 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Introduction PTB-FLA Design PTB-FLA Validation Conclusion References |
بخشی از متن مقاله: |
Abstract Nowadays many researchers are developing various distributed and decentralized frameworks for federated learning algorithms. However, development of such a framework targeting smart Internet of Things in edge systems is still an open challenge. In this paper, we present our solution to that challenge called Python Testbed for Federated Learning Algorithms. The solution is written in pure Python, and it supports both centralized and decentralized algorithms. The usage of the presented solution is both validated and illustrated by three simple algorithm examples.
Introduction Federated learning was introduced by McMahan et al. [1] as a decentralized approach to model learning that leaves the training data distributed on the mobile devices and learns a shared model by aggregating locally computed updates. They presented FedAvg, a practical method for the federated learning of deep networks based on iterative model averaging, see Algorithm 1 FederatedAveraging in [1] on page 5. The main advantages of federated learning are: (i) it preserves local data privacy, (ii) it is robust to the unbalanced and nonindependent and identically distributed (non-IID) data distributions, and (iii) it reduces required communication rounds by 10–100x as compared to synchronized stochastic gradient descent (FedSgd).
McMahan’s seminal paper [1] inspired many researchers’ papers and in this limited space we mention just few of them. Immediately after [1], Bonawitz et al. [2] introduced an efficient secure aggregation protocol for federated learning, and Konecny et al. [3] presented algorithms for further decreasing communication costs. More recent papers are focused on data privacy [4, 5].
Conclusion In this paper, we developed the federated learning framework targeting smart IoTs in edge systems called Python Testbed for Federated Learning Algorithms (PTB-FLA), with the primary intention to be used as a framework for developing FLAs on a single computer. The solution is written in pure Python, and it supports both centralized and decentralized algorithms. The PTB-FLA usage is both validated and illustrated by three simple algorithm examples.
The main PTB-FLA advantages are the following: (i) it keeps the application footprint small so to fit to smart IoTs and (ii) it keeps the installation as simple as possible (with no external dependencies). |