مشخصات مقاله | |
ترجمه عنوان مقاله | انتقال مکانیکی در سلول های بنیادی |
عنوان انگلیسی مقاله | Mechanotransduction in stem cells |
نشریه | الزویر |
انتشار | مقاله سال ۲۰۲۴ |
تعداد صفحات مقاله انگلیسی | ۱۷ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals List – JCR – MedLine – DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۴٫۳۳۰ در سال ۲۰۲۲ |
شاخص H_index | ۱۰۹ در سال ۲۰۲۴ |
شاخص SJR | ۱٫۵۹۰ در سال ۲۰۲۲ |
شناسه ISSN | ۱۶۱۸-۱۲۹۸ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۲۲ |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | پزشکی |
گرایش های مرتبط | پزشکی مولکولی – ژنتیک پزشکی – مغز و اعصاب |
نوع ارائه مقاله |
ژورنال |
مجله | European Journal of Cell Biology |
دانشگاه | Institute of Pathology, University Medical Centre Gottingen, Germany |
کلمات کلیدی | سلول های بنیادی پرتوان – سلول های بنیادی چند توان – انتقال مکانیکی – مکانیک زیست شناسی – تنظیم اپی ژنتیک – بازسازی کروماتین |
کلمات کلیدی انگلیسی | Pluripotent stem cells – Multipotent stem cells – Mechanotransduction – Mechanobiology – Epigenetic regulation – Chromatin remodelling |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ejcb.2024.151417 |
لینک سایت مرجع | https://www.sciencedirect.com/science/article/pii/S0171933524000347 |
کد محصول | e17774 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract ۱ Introduction ۲ Stem cell microenvironment ۳ General mechanisms of integrin-mediated mechanosensing and mechanotransductive processes ۴ Mechanobiology and mechanotransductive processes in multi- and pluripotent stem cells ۵ Nuclear mechanotransduction in (stem) cells ۶ Conclusions CRediT authorship contribution statement Declaration of Competing Interest Acknowledgements Data availability References |
بخشی از متن مقاله: |
Abstract Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Introduction One of the basic principles enabling multicellular life is the differentiation of stem cells (SCs), into specialised cells with a defined identity, shape, and function ( McBeath et al., 2004 ) ( Tewary et al., 2018 ). SCs are defined as cells that are clonogenic, which defines their capability of both, self-renewing and retaining multilineage differentiation potency. In vertebrates, the Zygote represents the earliest stem cell (totipotent) in ontogeny, from which originate the pluripotent stem cells (PSCs) of the inner cell mass of the blastocyst ( Dean et al., 2003 , Smith, 2017 ). Soon thereafter, PSCs continue to expand during embryo development becoming progressively committed in their cell fate and acquiring a more restricted potency ( Dean et al., 2003 , Osorno et al., 2012 , Smith, 2017 ). Even at the end of embryogenesis, when the organism is fully formed, and its organs are composed of functionally mature cells, some SCs are still present. These cells, which possess a more limited differentiating potential (multipotent), in turn, give rise to a progeny of precursor cells and, finally, to functionally mature cells. Some examples are represented by the hematopoietic SCs in the bone marrow, the intestinal SCs in the gut’s crypts, the epithelial SCs in the epidermis or the mesenchymal stem cells (MSCs) which play an important role in the maintenance and regeneration of bones and cartilage ( Barker, 2014 , Evans et al., 2013 , Guan et al., 2012 , Tewary et al., 2018 , Watt, 2002 , Weissman, 2000 ). The inherent high level of plasticity characterising SCs is at the base of their capability to respond precisely to appropriate stimuli with differentiative behaviour. Understanding this essential principle of multicellular life; i.e., the regulation of cell identity and fate, is one of the most important fields of research in modern cell biology, primarily due to its impact on the development of new therapeutic approaches in regenerative medicine. Such knowledge can directly benefit stem cell bioengineering by leveraging the SC plasticity and control over SC behaviour for the application in tissue engineering, patient-specific disease modelling and cell therapies ( Tewary et al., 2018 ).
Conclusions In recent years there has been a fascinating expansion of our knowledge about the interplay between mechanotransductive signalling and chromatin regulation, and how this impacts on multi- and pluripotent stem cell dynamics, which we try to highlight in this review. However, what shapes the life of a cell and its identity, from the outside (biophysical and structural cues of the cellular microenvironment) and from the inside (nuclear and chromatin organisation) and how it is connected (mechanotransduction and epigenetics) are highly relevant biological issues that are yet far from being understood in detail. Starting from the stem cell/microenvironment interface, a much more detailed understanding of the nanoscale events in this interface is necessary to unravel 1) what the SC perceives of the biophysical nature and the 3D adhesion site configuration and 2) how the immanent nanoscale information is interpreted and converted, through force-based actions, into a remodelling at the level of the IACs, cell/cell adhesions, cytoskeleton and nucleus. |