مشخصات مقاله | |
ترجمه عنوان مقاله | ظهور برنامه ریزی انرژی شهری – هم افزایی بین انرژی و برنامه ریزی شهری برای بزرگشهر سائو پائولو (برزیل) |
عنوان انگلیسی مقاله | The dawn of urban energy planning – Synergies between energy and urban planning for São Paulo (Brazil) megacity |
انتشار | مقاله سال ۲۰۱۹ |
تعداد صفحات مقاله انگلیسی | ۵۷ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۷٫۰۹۶ در سال ۲۰۱۸ |
شاخص H_index | ۱۵۰ در سال ۲۰۱۹ |
شاخص SJR | ۱٫۶۲۰ در سال ۲۰۱۸ |
شناسه ISSN | ۰۹۵۹-۶۵۲۶ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۸ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی معماری، شهرسازی |
گرایش های مرتبط | مدیریت پروژه و ساخت، مدیریت شهری، طراحی شهری، تکنولوژی معماری |
نوع ارائه مقاله |
ژورنال |
مجله | مجله تولید پاک – Journal of Cleaner Production |
دانشگاه | Institute of Energy and Environment (IEE), University of São Paulo, Av. Professor Luciano Gualberto, 1289, 05508-010 São Paulo, SP, Brazil |
کلمات کلیدی | برنامه ریزی انرژی شهری، سیستم انرژی شهری سائو پائولو، بزرگشهر، مدل شبیه سازی LEAP_SP |
کلمات کلیدی انگلیسی | Urban energy planning، São Paulo urban energy system، Megacity، LEAP_SP simulation model |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jclepro.2019.01.013 |
کد محصول | E11580 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
Introduction ۲- Proposed integrated solutions matrix of energy and urban planning strategies ۳- Material and methods for modelling the integrated solutions matrix ۴- Results and discussion ۵- Conclusions and policy implications References |
بخشی از متن مقاله: |
Abstract Energy use in cities has attracted significant research in recent years and city level energy planning is becoming a required task driven by the contribution of decentralized renewable electricity production and a demand-side approach towards greenhouse gases emissions reduction. However, traditional energy planning approaches are limited because they tend to focus on technology substitution. We argue that a more ambitious and holistic urban energy planning approach is desirable. This paper proposes a novel method to integrated Energy and Urban Planning solutions assessment by modelling and quantifying urban energy planning strategies impact in terms of energy savings, greenhouse gases emission reduction and in increasing cities renewable distributed and local energy generation. We apply the approach to São Paulo megacity using the LEAP_SP urban energy simulation model (from 2014 to 2030) through four scenarios. Results showed that by using a traditional energy planning approach, it is possible to reach 2% energy savings from the current situation, 18% greenhouse gas emission reduction and a three-fold increase in renewables deployment. When applying only urban planning strategies these benefits are of 10% energy savings, 8% greenhouse gas emission reduction and one-fold increase in renewables deployment. If a more holistic urban energy approach is adopted by integrating both energy and urban planning policies, gains increase to 12% energy savings, 30% greenhouse gases emission reductions, and a four-fold increase in renewable distributed and local electricity generation from the current city status. Introduction Cities are being encouraged to adopt carbon mitigation measures by promoting Energy Planning (EP) policies and actions. In this new endeavor, cities, their management and inhabitants, need to gain expertise and consider the urban energy system analysis and EP strategies in their Urban Planning (UP) process. Urban energy needs, greenhouse gases (GHG) and air pollutants emissions have a strong relationship with cities’ physical, social, economic and environmental aspects (Yazdanie et al., 2017). Decision-making and planning processes made today will have a long lasting impact, and will determine the boundary conditions for the future of Urban Energy Systems (UES) planning (Creutzig et al., 2016). Recent literature on UES advokes that systemic characteristics of urban energy use are generally more important determinants of urban energy efficiency than those of individual consumers or of technological artifacts (Grubler et al., 2012). The latter is the traditional focus of end-use oriented energy efficiency policies (also known as demandside approach). Therefore, it is necessary to go further than this traditional focus. Recently, Creutzig et al. (2018), made a call for collaborative and transdisciplinary efforts in research to more holistically address demand-side solutions that effectively cope with climate change challenges. The authors refer the importance of going beyond efficient technology design and emphasize the relevance of influencing life-styles through UP. Worldwide cities’ ascension has increased the relevance of Urban Energy Planning (UEP) which highlights the interlinkage between UP and EP (Ruparathna et al., 2017). This is becoming a pressing issue in the international debate and scientific literature. However, both UP and EP knowledge areas refer to the difficulty of measuring the impact that each individual urban attribute or parameter2 has in the city energy system. |