مشخصات مقاله | |
ترجمه عنوان مقاله | ویژگی های متمایز کننده برای بازیابی بافت با استفاده از بسته های موجک |
عنوان انگلیسی مقاله | Discriminative Features for Texture Retrieval Using Wavelet Packets |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 15 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA |
کلمات کلیدی | نمایه سازی بافت، بسته های موجک، حداقل احتمال خطا، تنظیم پیچیدگی، هرس درختی حداقل هزینه |
کلمات کلیدی انگلیسی | Texture indexing, wavelet packets, minimum probability of error, complexity regularization, minimum cost tree pruning |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2947006 |
کد محصول | E13862 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
ABSTRACT
I. INTRODUCTION II. PRELIMINARIES III. WAVELET PACKET BASED TEXTURE RETRIEVAL IV. WAVELET PACKET BASIS SELECTION V. SUMMARY OF THE MODELING STAGE VI. EXPERIMENTAL ANALYSI VII. DISCUSSION: CONNECTION WITH CNN VIII. CONCLUSION AND FUTURE WORK APPENDIX WAVELET PACKETS ANALYSIS ACKNOWLEDGMENT REFERENCES |
بخشی از متن مقاله: |
ABSTRACT
Wavelet Packets (WPs) bases are explored seeking new discriminative features for texture indexing. The task of WP feature design is formulated as a learning decision problem by selecting the filter-bank structure of a basis (within a WPs family) that offers an optimal balance between estimation and approximation errors. To address this problem, a computationally efficient algorithm is adopted that uses the tree-structure of the WPs collection and the Kullback-Leibler divergence as a discrimination criterion. The adaptive nature of the proposed solution is demonstrated in synthetic and real data scenarios. With synthetic data, we demonstrate that the proposed features can identify discriminative bands, which is not possible with standard wavelet decomposition. With data with real textures, we show performance improvements with respect to the conventional Wavelet-based decomposition used under the same conditions and model assumptions. INTRODUCTION In the current information age, we have access to unprecedented sources of digital image content. Consequently, being able to index and organize these documents based solely on the content extracted from the signals without relying on metadata or expensive human annotations has become a central problem [1]–[21]. In this context, an important task in image processing is texture retrieval. This problem has been richly studied over the last two decades with different frameworks and approaches [3]–[21], including, more recently, deep learning approaches [22], [22]–[26], [26]–[29]. In a nutshell, the texture retrieval problem can be formulated in two stages. The first stage, feature extraction (FE), implies the creation of low-dimensional descriptions of the image (i.e., the dimensionality reduction phase) with the objective of capturing the semantic high-level information that discriminates relevant texture classes. The second stage proposes a similarity measure (SM) on the feature space to compare and organize the images in terms of their signal content. For the FE stage, the Wavelet transform (WT) has been widely adopted as a tool to decompose and organize the signal content in sub-spaces associated with different levels of resolution (or scale) information [30], [31]. Based on this sub-space decomposition, energy features have been used as a signature that represents the salient texture attributes for texture indexing [32]. |