مشخصات مقاله | |
ترجمه عنوان مقاله | ایجاد کلیه کلمات دودویی مینیمال لاینحل شبکه پتری |
عنوان انگلیسی مقاله | Generating all minimal petri net unsolvable binary words |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 19 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.185 در سال 2018 |
شاخص H_index | 74 در سال 2019 |
شاخص SJR | 0.815 در سال 2018 |
شناسه ISSN | 0166-218X |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | مهندسی نرم افزار، معماری سیستم های کامپیوتری، برنامه نویسی کامپیوتر |
نوع ارائه مقاله |
ژورنال |
مجله | ریاضیات کاربردی گسسته – Discrete Applied Mathematics |
دانشگاه | Parallel Systems, Department of Computing Science, Carl von Ossietzky Universität, D-26111 Oldenburg, Germany |
کلمات کلیدی | کلمه دودویی، سیستم انتقال نشادار، شبکه پتری، سنتز |
کلمات کلیدی انگلیسی | Binary word، Labelled transition system، Petri net، Synthesis |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.dam.2019.04.023 |
کد محصول | E13264 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Basic notions 3- Structural classification of minimal unsolvable words 4- Generative nature of minimal unsolvable binary words 5- Generation-based classification of minimal unsolvable words 6- Experimental results 7- Conclusion References |
بخشی از متن مقاله: |
Abstract Sets of finite words, as well as some infinite ones, can be described using finite systems, e.g. automata. On the other hand, some automata may be constructed with the use of even more compact systems, like Petri nets. We call such automata Petri net solvable. In this paper we consider the solvability of singleton languages over a binary alphabet (i.e. binary words). An unsolvable (i.e. not solvable) word w is called minimal if each proper factor of w is solvable. We present a complete language-theoretical characterisation of the set of all minimal unsolvable binary words. The characterisation utilises morphic-based transformations which expose the combinatorial structure of those words, and allows to introduce a pattern matching condition for unsolvability. Introduction To deal with infinite sets of words we need to specify them in a finite way. Finite automata which are known as a classical model for describing regular languages, are equivalent to finite labelled transition systems [8]. Some sets may be expressed with the use of even more compact system models. In this paper we investigate the synthesis problem with a specification given in the form of labelled transition systems. The sought system model is a place/transition Petri net [11], with its reachability graph as a natural bridge between specification and implementation. Namely, we are concerned with finding a net, whose reachability graph is isomorphic to a given labelled transition system. To address this issue one may use the general approach for net-synthesis suggested by the theory of regions [1]. For a given labelled transition system, the solution of a number of linear inequations systems provided by the theory of regions exists if and only if there exists an implementation in the form of a net. Moreover, solutions of such linear inequations systems are usually utilised during the synthesis of the resulting system (see Synet [4] and APT [12]). Our aim is to initiate a combinatorial approach and to provide a complete characterisation of a generative nature for a special kind of labelled transition systems — non-branching and acyclic transition systems having at most two labels (i.e. binary words) [2]. More precisely, we characterise all minimal unsolvable binary words. The paper is organised as follows. First we give some basic notions and notations concerning labelled transition systems, Petri nets and theory of regions. |