مشخصات مقاله | |
ترجمه عنوان مقاله | تشخیص تشنج سخت افزار پسند با یک مجموعه بهبودیافته از درخت های تصمیم گیری کم عمق |
عنوان انگلیسی مقاله | Hardware-friendly seizure detection with a boosted ensemble of shallow decision trees |
انتشار | مقاله سال 2016 |
تعداد صفحات مقاله انگلیسی | 4 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی کامپیوتر – مهندسی پزشکی |
گرایش های مرتبط | الگوریتم و محاسبات – معماری کامپیوتر – بیو الکتریک |
نوع ارائه مقاله |
کنفرانس |
مجله / کنفرانس | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
دانشگاه | Electrical Engineering Department, California Institute of Technology, Pasadena, CA |
شناسه دیجیتال – doi |
https://doi.org/10.1109/EMBC.2016.7591074 |
کد محصول | E11734 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I.Introduction II.Data Description and Methodology III.Classifier Design and Performance Evaluation IV.Hardware-Friendly Classification V.Conclusion |
بخشی از متن مقاله: |
INTRODUCTION Given the large population of patients with intractable epilepsy, the automatic detection of seizure onset has sparked great interest among researchers over the past 20 years. In addition to providing a vital seizure alert to the patient, caregiver or a therapeutic device, it significantly eases the task of reviewing and labeling seizure segments in a patient’s EEG, a time-intensive task routinely done by neurologists. Implanting a device that performs both detection and closedloop suppression is the ultimate goal. Today, the Responsive Neurostimulator (RNS) by NeuroPace provides an FDAapproved therapy option to reduce the seizure frequency. However, RNS is bulky, limited in number of channels, and only relies on simple hard thresholding with moderate seizure classification accuracy. classification accuracy. The power and area constraints imposed by implantable devices do not allow the implementation of sophisticated on-chip classification algorithms. Indeed, even the simple arithmetic operations performed in conventional classification methods, such as SVMs [1] and k-nearest neighbor (KNN) algorithms [2] can become very costly with increasing number of recording channels and higher sampling rates. With only simple comparator stages as their building blocks, decision trees (DTs) are a preferable solution to reduce hardware design complexity. Despite all their advantages, decision trees are unfortunately very susceptible to overfitting in seizure detection, particularly due to the high dimensionality of the feature space. This necessitates a careful design. |