مشخصات مقاله | |
ترجمه عنوان مقاله | تجزیه و تحلیل انتقال حرارت مبدل حرارتی پوسته و لوله که با نانوسیالات گرافن کار می کند |
عنوان انگلیسی مقاله | Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 8 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله کوتاه (Short communication) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.379 در سال 2019 |
شاخص H_index | 21 در سال 2020 |
شاخص SJR | 1.148 در سال 2019 |
شناسه ISSN | 2214-157X |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مکانیک |
گرایش های مرتبط | مکانیک سیالات، تبدیل انرژی، تاسیسات حرارتی و برودتی |
نوع ارائه مقاله |
ژورنال |
مجله | مطالعات موردی در مهندسی حرارتی – Case Studies in Thermal Engineering |
دانشگاه | Department of Chemical Engineering, Faculty of Engineering, Basra University, Iraq |
کلمات کلیدی | نانو سیال، گرافن، انتقال حرارت، اثربخشی انرژی |
کلمات کلیدی انگلیسی | Nanofluid، Graphene، Heat transfer، Energy effectiveness |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.csite.2020.100584 |
کد محصول | E14312 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Experimental investigation 3- Procedure and Calculations 4- Results and discussion 5- Conclusion References |
بخشی از متن مقاله: |
Abstract Nanofluids have attracted huge attention because of their effective physical and thermal properties. One of many applications of nanofluids is the enhancement of the thermal performance of heat exchangers. In the current study, an experimental investigation has been conducted for studying the effects of graphene nanofluids on the convective heat transfer in a vertical shell and tube heat exchanger. Graphene flakes were prepared using graphite foam that is derived from sugar as a raw material. The prepared Graphene flakes have been characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, and Raman spectroscopy. The graphene nanofluid has been used in the tube side of the heat exchanger to enhance its heat transfer performance. Different parameters such as nanofluids’ concentration, flow rate and inlet temperature were studied and their effects on heat transfer coefficient and thermal efficiencies are discussed. The results show that using of graphene/water nanofluids enhances the thermal performance of the vertical shell and tube heat exchanger. A maximum increase in the heat transfer coefficient of 29% was achieved using 0.2% graphene/water nanofluids. Furthermore, the mean thermal efficiency of the heat exchanger was enhanced by 13.7% by using graphene/ water nanofluid. Introduction Heat exchangers are widely used by various types of industries to exchange heat between different fluids for waste heat recovery and utilities cost reduction. The thermal and physical properties of the heat transfer fluids are crucial factors that dedicate the efficiency of heat exchangers. During the last two decades, nanofluids have attracted a huge attention of researchers due to its enhanced thermal properties and flow characteristics [1]. These advantages make nanofluids promising heat transfer fluids to be used for heat transfer enhancement. Many experimental studies have been conducted for the evaluation of heat transfer characteristics of nanofluids in different types of heat exchangers [2–7]. These types of heat exchangers include plate heat exchangers [2], double pipe heat exchangers [3], and micro heat exchangers [6]. However, in open literature, similar studies on shell and tube heat exchangers are scarce. Thermal performance of a shell and tube heat exchanger was analytically investigated by Shahrul et al. using nanofluids of four different types of nanoparticles, Fe3O4, ZnO, TiO2, CuO, and Al2O3 [8]. |