مقاله انگلیسی رایگان در مورد یک چارچوب پایش از دور با بازده فوری ترکیبی با الگوریتم NB-WOA – الزویر 2019

 

مشخصات مقاله
ترجمه عنوان مقاله یک چارچوب پایش از دور با بازده فوری ترکیبی با الگوریتم NB-WOA برای بیماران مبتلا به بیماری های مزمن
عنوان انگلیسی مقاله A Hybrid Real-time remote monitoring framework with NB-WOA algorithm for patients with chronic diseases
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 39 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journal List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
5.341 در سال 2017
شاخص H_index 85 در سال 2019
شاخص SJR 0.844 در سال 2017
شناسه ISSN 0167-739X
شاخص Quartile (چارک) Q1 در سال 2017
رشته های مرتبط مهندسی کامپیوتر، پزشکی، مهندسی فناوری اطلاعات و ارتباطات
گرایش های مرتبط هوش مصنوعی، مدیریت ICT، سایبرنتیک پزشکی
نوع ارائه مقاله
ژورنال
مجله سیستم های کامپیوتری نسل آینده – Future Generation Computer Systems
دانشگاه  Department of Computer Engineering and Systems, Faculty of Engineering, Mansoura University, 60 Elgomhouria St., Mansoura city 35516, Egypt
کلمات کلیدی خدمات درمانی هوشمند، همگرایی اینترنت اشیا (IoT)، نایو بیز (NB)، الگوریتم بهینه سازی وال (WOA)، داده های بزرگ، مجموعه داده ناهماهنگ
کلمات کلیدی انگلیسی Smart healthcare، Internet of Things convergence (IoT)، Naïve bayes (NB)، Whale optimization algorithm (WOA)، Big data، Imbalanced dataset
شناسه دیجیتال – doi
https://doi.org/10.1016/j.future.2018.10.021
کد محصول  E10965
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1- Introduction

2- Related work

3- Hybrid real-time remote monitoring (HRRM) architecture

4- A case study on patients with blood pressure disorders

5- The Proposed Hybrid Knowledge Discovery Model (HKDM)

6- The proposed NB-WOA algorithm for improving HRRM

7- Results and discussion

8- Conclusions and future work

References

بخشی از متن مقاله:

Abstract

The embracing of the Internet of Things (IoT) and Cloud Computing technologies gives excellent opportunities to develop smart healthcare services that have great prediction capabilities. This paper proposes a Hybrid Real-time Remote Monitoring (HRRM) framework, which remote-monitors patients continuously. This smart framework predicts the real health statuses of the patients in real time by using context awareness. The proposed HRRM framework innovates a Patient’s Local Module (PLM) that do a convergence between IoT sensors and clouds. The HRMM transfers some of the computations to the edge of the network in (PLM) such as converting the low-level data to a higher level of abstraction to speed-up the computations in the cloud portion of the HRMM. The convergence of IoT enables the HRMM to use the enormous cloud power in storing, processing, analyzing big data, building classification models for the category of patients’ health status. The local portion of the HRMM uses classification models that have been trained in the cloud to predict the health status of the patient locally in the event of internet interruption or cloud disconnection to save his life in the disconnection periods. Furthermore, this paper proposes a cloud classification technique that is capable of dealing with big imbalanced dataset by minimizing errors especially in the minority class that represents the critical situations. Finally, a hybrid algorithm of Naïve Bayes (NB) and Whale Optimization Algorithm (WOA) has been proposed to select the minimal set of features that achieve the highest accuracy. The (NB-WOA) works as a safe-failure module that decides when to stop the monitoring using HRMM in the case of the failure of influential sensors. Experiments have proved that the HRMM is capable of predicting the health status of the patients suffering from blood pressure disorders accurately. Also, it proved that NB-WOA accelerates the classification process and saves storage space.

Introduction

Machine learning has many contributions in the medical field such as Remote Patient’s Monitoring (RPM) systems that deliver care to the patient suffering from chronic disease especially elderly patients at his home [1]. RPM is defined as using technology to monitor patients remotely (e.g., at his house) to improve patient’s quality of life. It tracks the patient continuously without obstruction to the freedom of his movement to prevent possible complications, and all these services should be provided at reasonable cost [2]. Implantable and wearable biomedical sensors have received much attention over the last two decades because of the need to collect sensor data that contains physiological signals, patient’s activity during vital signs’ measurement, etc. in real time while practicing his daily routine [3]. IoT exploited the progress in ubiquitous sensing which is qualified by Wireless Sensor Network (WSN) technologies to enable actuators and sensors to interact seamlessly with the ambient environment and to share the collected information among different platforms. IoT has made a huge leap by enabling various technologies such as near field communication (NFC), Radio-frequency identification (RFID) and embedded sensor to transform the internet into a fully integrated platform [4,5]. There are many factors that can affect vital signs’ values of the patient such as patient’s activities (current/last), ambient conditions (temperature, humidity, noise, etc.), patient’s habits (sleeping, smoking, alcoholic beverages, food, etc.) and many other factors. Context awareness defines the capability of a system to gather information from the surrounding environment at any time to comprehend it and adapt its behavior accordingly. Context-aware RPM model uses this technique to comprehend the current health situation of the patient and provide a personalized health care service accordingly [6]. For example, context-aware RPM refers to an emergency case when the patient’s heart rate (HR) increases above normal during sleep while refers to a normal case if the increase in HR occurs during exercise.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا