مقاله انگلیسی رایگان در مورد شناسایی گره های تاثیرگذار در شبکه های پیچیده – الزویر ۲۰۱۸
مشخصات مقاله | |
انتشار | مقاله سال ۲۰۱۸ |
تعداد صفحات مقاله انگلیسی | ۴۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
منتشر شده در | نشریه الزویر |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
نوع مقاله | ISI |
عنوان انگلیسی مقاله | Identifying influential nodes in complex networks based on AHP |
ترجمه عنوان مقاله | شناسایی گره های تاثیرگذار در شبکه های پیچیده مبتنی بر AHP |
فرمت مقاله انگلیسی | |
رشته های مرتبط | مهندسی فناوری اطلاعات |
گرایش های مرتبط | شبکه های کامپیوتری |
مجله | فیزیک آ – Physica A |
دانشگاه | School of Computer and Information Science – Southwest University – China |
کلمات کلیدی | شبکه های پیچیده، گره های تاثیرگذار، AHP، MADM، اندازه گیری مرکزیت |
کلمات کلیدی انگلیسی | Complex networks, Influential nodes, AHP, MADM, Centrality measure |
شناسه دیجیتال – doi |
http://dx.doi.org/10.1016/j.physa.2017.02.085 |
کد محصول | E8511 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
بخشی از متن مقاله: |
۱٫ Introduction
In recent years, complex network theory with advances in the understanding of the highly interconnected nature of various social, biological, and communication systems has gained much attention[1, 2, 3, 4, 5, 6, 7, 8]. Transferring information, trust, ideas, diseases and influences between any two nodes is the key function of complex networks[9, 10, 11]. The information can spread rapidly to a large number of nodes begin with an influential node. Hence, evaluating the influence of the nodes is a significant issue in complex networks [12], such as in the control of the disease and rumor dynamics[13, 14, 15], research on public opinion[16, 17], and creating new marketing tools [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Many measurements of node centrality have been used commonly such as Degree centrality (DC)[28], Betweenness centrality (BC)[28, 29, 30], Closeness centrality (CC)[28] and so on. The DC method is very simple but of little relevance, since the measure does not take into consideration the global structure of the network. BC and CC are global metrics which can better identify influential nodes, but they are difficult to apply in largescale networks due to their computational complexity. Another limitation of CC is the lack of applicability to networks with disconnected components: two nodes that belong to different components but do not have a finite distance between them. Several spectral centrality measures are also available, such as semi-local centrality(SLC)[31], eigenvector centrality (EC)[32], PageRank (PR)[33], and LeaderRank (LR)[34]. In SLC the topo logical connections among the neighbors are neglected, only the number of the nearest and the next nearest neighbors of a node is taken into account[35]. EC can not be applied to asymmetric networks in which some positions are unchosen[32]. PR, as well as LR, only has effect in directed networks, it will degenerate to DC in undirected networks[31]. |