دانلود رایگان مقالات امرالد - Emeraldدانلود رایگان مقالات سال 2017دانلود رایگان مقاله ISI اینترنت اشیا به زبان انگلیسیدانلود رایگان مقاله ISI اینترنت و شبکه های گسترده به زبان انگلیسیدانلود رایگان مقاله ISI لجستیک و زنجیره تامین به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی صنایع به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی فناوری اطلاعات به زبان انگلیسی سال 2022 و 2023سال انتشار

مقاله انگلیسی رایگان در مورد IoT بر اساس لجستیک تولید و سیستم زنجیره تامین و سیستم فیزیکی سایبری – امرالد ۲۰۱۷

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۷
تعداد صفحات مقاله انگلیسی ۳۱ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه امرالد
نوع مقاله ISI
عنوان انگلیسی مقاله Internet of things-based production logistics and supply chain system-Part 2: IoT-based cyber-physical system: A framework and evaluation
ترجمه عنوان مقاله IoT بر اساس لجستیک تولید و سیستم زنجیره تامین و سیستم فیزیکی سایبری
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مهندسی فناوری اطلاعات، مهندسی صنایع
گرایش های مرتبط اینترنت و شبکه های گسترده، لجستیک و زنجیره تامین
مجله مدیریت صنعتی و سیستم های داده – Industrial Management & Data Systems
دانشگاه National Taiwan Ocean University – Keelung – Taiwan
کلمات کلیدی اینترنت اشیا، RFID، لجستیک تولید، سیستم فیزیکی-سایبری (CPS)، رقابت
کلمات کلیدی انگلیسی Internet of Things (IoT), RFID, Production logistics, Cyber-Physical System (CPS), Emulation
کد محصول E6840
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱٫ Introduction

Enterprises around the world are facing increasingly severe global competition, the shorter life cycle of new products, and changing customer demands. Therefore, they must transform their business operations to provide greater product variety and customization through flexibility and quick responsiveness, and also to remove the data latency, analysis latency, as well as decision latency as much as possible (Hackathorn 2003). Mass customization often requires firms to manufacture and deliver customer-specific products or services with the same price and efficiency as mass-produced products. In response to the new business model, they must adapt new information systems that can manage dynamic manufacturing activities and take immediate action to resolve any events that disrupt production or cause customer dissatisfaction (Byrd et al., 2006). Coupling mass customization, just in time (JIT), and lean production with real-time business intelligence will enable a firm to compete in today’s hyper competition environment (Du et al., 2006). In other words, firms must re-engineer their current business practices to a real-time enterprise (RTE) operational model, which uses up-to-date information to eliminate business process delays (Kopitsch 2005). However, in the mass customization environment, the execution process of a production system is frequently disrupted by internal and external dynamics, such as equipment failure and changing customer orders (Qu et al., 2016). The term production logistics (PL) describes these execution processes as logistics activities related to material transfer between production stages and PL often accounts for nearly 95% execution time of the entire manufacturing process (Qu et al., 2016). To effectively employ mass customization and JIT production for RTE models, auto-ID methods are required for near real-time process control (Hansen and Gillert 2008). Many manufacturing firms already adopted auto-ID to manage their PL activities. The enabling technologies for auto-ID that attracted the most attention in recent years include Radio Frequency Identification (RFID) and Internet of Things (IoT). More specifically, IoT extends into our everyday lives through a wireless network of uniquely identifiable objects and forms a global infrastructure of networked physical objects (Welbourne et al., 2009). This article (part B of the research) extended the implementation architecture proposed in Part A of this research. Part A of the research proposed an implementation architecture employing IoT technologies and comprising one IoT cloud and several iNodes, where each iNode manages multiple IoT devices We called the proposed implementation architecture an IoT-based CPS for PL and supply chain applications. Therefore, this aritcle is clearly link to Part A of this research. IoT technology has been adopted by a wide range of industries in both indoor assets tracking (Thiesse et al., 2006; Zhang et al., 2007; Wang et al., 2010) and outdoor assets tracking (Choi et al., 2012). Recent studies also show that integrating IoT technology, such as RFID, in shop floor operations can greatly optimize and improve manufacturing and PL operations (Qiu 2007, Zhou et al., 2007; Huang et al., 2008; Ruey-Shun et al., 2008; Wang et al., 2012; Zhong et al., 2013). The basic infrastructure of IoT consists of Electronic Product Code (EPC) and EPCglobal network (Thiesse et al., 2009; Yan and Huang 2009), which provide a flexible and scalable information system architecture for implementing a range of applications, such as anti-counterfeit (Kwok et al., 2010) and information sharing (Yan et al., 2016). To fully realize the potential benefits of IoT technology, firms must adopt a new IT infrastructure that can better track and manage a large volume of distributed objects within their organizations and beyond. As we are moving towards the world of IoT, millions of embedded devices and industrial machines empowered with Internet technologies will be able to communicate, collaborate, and offer their functionality as a machine to machine (M2M) service (Karnouskos et al., 2009).

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا