مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری کوتاه مدت گذشته به عنوان پیشگویی کننده رفتار انسان مربوط به باز کردن پنجره در ساختمان های تجاری |
عنوان انگلیسی مقاله | Learning short-term past as predictor of window opening-related human behavior in commercial buildings |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 16 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.031 در سال 2018 |
شاخص H_index | 147 در سال 2019 |
شاخص SJR | 1.934 در سال 2018 |
شناسه ISSN | 0378-7788 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی معماری، مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی، برنامه نویسی کامپیوتر، مدیریت پروژه و ساخت |
نوع ارائه مقاله |
ژورنال |
مجله | انرژی و ساختمان ها – Energy and Buildings |
دانشگاه | E3D – Institute of Energy Efficiency and Sustainable Building, RWTH Aachen University, Mathieustr. 30, Aachen, 52074, Germany |
کلمات کلیدی | شبکه های عصبی، بردارهای ورودی توده ای، توالی مدل سازی، سیستم های اتوماسیون ساختمان، رفتار مصرف انرژی ساکنین، باز کردن پنجره |
کلمات کلیدی انگلیسی | Neural networks، Stacked input vectors، Sequence modelling، Building automation systems، Occupant behavior، Window opening |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.enbuild.2018.12.012 |
کد محصول | E11487 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Method 3- Results 4- Discussion 5- Limitations 6- Conclusion References |
بخشی از متن مقاله: |
Abstract This paper addresses the question of identifying the time-window in short-term past from which the information regarding the future occupant’s window opening actions and resulting window states in buildings can be predicted. The addressed sequence duration was in the range between 30 and 240 time-steps of indoor climate data, where the applied temporal discretization was one minute. For that purpose, a deep neural network is trained to predict the window states, where the input sequence duration is handled as an additional hyperparameter. Eventually, the relationship between the prediction accuracy and the time lag of the predicted window state in future is analyzed. The results pointed out, that the optimal predictive performance was achieved for the case where 60 time-steps of the indoor climate data were used as input. Additionally, the results showed that very long sequences (120–240 time-steps) could be addressed efficiently, given the right hyperprameters. Hence, the use of the memory over previous hours of high resolution indoor climate data did not improve the predictive performance, when compared to the case where 30/60 min indoor sequences were used. The analysis of the prediction accuracy in the form of F1 score for the different time lag of future window states dropped from 0.51 to 0.27, when shifting the prediction target from 10 to 60 min in future. Introduction Occupant behavior (OB) has been identified to be one of the principal factors influencing the energy consumption in commercial buildings [1], [2], [3], [4]. Due to that, developing an accurate model that predicts human actions would be beneficial for achieving higher indoor comfort or optimization of energy consumption. Additionally, there have been a number of studies that addressed modeling the OB for its inclusion in building automation systems (BAS) [5], [6], [7], [8], [9], [10], [11]. According to the current research, OB in buildings is often defined as a discrete sequence in the temporal domain [5], [12], [13], [14], [15], [16], [17], [18]. As such, not only is it necessary to identify which variables lead to occupants’ actions, but also in which temporal rangedo the changes of variables in question occur, which motivated a number of studies on time-series modeling of OB. Liao et al. [14] presented a probabilistic graphical model for depicting the time-series of occupancy data. Fritsch et al. [12] presented the model that generates time series of window opening angles with the same statistics as the measured openings for the heating period. Dong and Andrews [5] proposed occupancy pattern recognition using semi-Markov models. Youngbloot and Cook [13] introduced a hierarchical model for controlling the smart environment based on occupants’ activities and concluded that learning algorithms built on Markov models experience performance issues when scaled to large problems. |