مقاله انگلیسی رایگان در مورد انتخاب سیاست های تعمیر و نگهداری – امرالد 2017

 

مشخصات مقاله
انتشار مقاله سال 2017
تعداد صفحات مقاله انگلیسی 17 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه امرالد
نوع نگارش مقاله مقاله پژوهشی (Research article)
نوع مقاله ISI
عنوان انگلیسی مقاله Maintenance policy selection: a fuzzy-ANP approach
ترجمه عنوان مقاله انتخاب سیاست های تعمیر و نگهداری: یک رویکرد فازی-ANP
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مهندسی صنایع
گرایش های مرتبط تولید صنعتی، برنامه ریزی و تحلیل سیستم ها
مجله مجله مدیریت فناوری تولید – Journal of Manufacturing Technology Management
دانشگاه University of Science and Technology of Mazandaran – Iran
کلمات کلیدی تصمیم گیری، منطق فازی، صنعت ساخت و ساز، تعمیر و نگهداری
کلمات کلیدی انگلیسی Decision making, Fuzzy logic, Manufacturing industry, Maintenance
شناسه دیجیتال – doi
https://doi.org/10.1108/JMTM-06-2017-0109
کد محصول E8472
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
1. Introduction

With the advent of competitive markets, companies have acknowledged the crucial necessity of progressing the maintenance system of the companies. Diverse sections of industries face numerous strategic decisions to attain the best feasible and realistic answers in risky and competitive environments. These decisions are extremely significant regarding the technology development, diversity of customers in addition to public pressure. Maintenance is a significant task in any manufacturing system and has a critical role in attaining the organization’s objectives (Seiti, Hafezalkotob and Fattahi, 2017). With the introduction of different maintenance systems, diverse maintenance strategies are applied to attain more added values. In this regard, numerous studies have been conducted on maintenance strategies (Alabdulkarim et al., 2015; Shaaban and Awni, 2014; Graisa and Al-Habaibeh, 2011; Savsar, 2010). Choosing an appropriate maintenance policy is a critical activity in manufacturing systems as it affects the performance of companies’ equipment. This practice is a common multi-criteria decision-making (MCDM) problem. An MCDM problem includes both perceptible and imperceptible factors (Galankashi et al., 2013; Ziaei et al., 2013; Dargi et al., 2014). Although different studies have been conducted on maintenance policy selection, only a few attempts have been made to see the MCDM approaches in conjunction with the effect of cost, risk and added value. In this regard, recognizing, incorporating and selecting the right maintenance policy to efficiently screen and assess the current situation of the company are a challenge for many researchers. Cost, risk and added value are very influential in maintenance planning. However, their simultaneous consideration is less investigated in the previous studies. This is somewhat due to intrinsic difficulties connected with complex models of maintenance policy selection. Therefore, considering these factors in maintenance planning is useful and affects the performance of companies’ equipment. The main justification to use a fuzzy-based method to tackle the problem of this research is the inherent struggle of comparing different policies using decision makers’ comments. The decision makers are comfortable to compare these strategies in fuzzy environment instead of deterministic scales. In addition, Fuzzy Analytic Network Process (FANP) is a suitable method to study the relations between decision elements in hierarchical structures. Therefore, developing an FANP model to rank and select the best maintenance policy for different equipment of an acid manufacturing plant is the main objective of this study. As the main justification to apply this method, FANP considers the uncertainty of data and the relation of criteria and alternatives which are very unique compared to other MCDM approaches.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا