مقاله انگلیسی رایگان در مورد پیش بینی شکست در قطعات ساخته شده – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله پیش بینی شکست در قطعات ساخته شده افزودنی با استفاده از پرتونگاری مقطعی محاسبه ای و شبیه سازی اشعه ایکس
عنوان انگلیسی مقاله Predicting failure in additively manufactured parts using X-ray computed tomography and simulation
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 10 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
0.970 در سال 2018
شاخص H_index 51 در سال 2019
شاخص SJR 0.277 در سال 2018
شناسه ISSN 1877-7058
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی مکانیک
گرایش های مرتبط ساخت و تولید
نوع ارائه مقاله
ژورنال و کنفرانس
مجله / کنفرانس پروسیدیای مهندسی – Procedia Engineering
دانشگاه  Volume Graphics GmbH, Speyerer Str. 4–6, 69115 Heidelberg, Germany
کلمات کلیدی پرتونگاری مقطعی محاسبه ای، شبیه سازی، مکانیک های ساختاری، روشهای مرزی غوطه ور، شکست، استحکام کششی، تخلخل، تولید افزودنی
کلمات کلیدی انگلیسی
computed tomography، CT، simulation، structural mechanics، immersed boundary methods، failure، tensile strength، porosity، additive manufacturing
شناسه دیجیتال – doi
https://doi.org/10.1016/j.proeng.2018.02.008
کد محصول  E12452
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1. Introduction

2. Methods

3. Results and Discussion

4. Conclusions and Outlook

Acknowledgments

References

 

بخشی از متن مقاله:
Abstract

In casting, molding, or additive manufacturing processes, there are some typical issues that can change the geometry of a part and cause porosity or other defects. With the aid of X-ray computed tomography (CT), internal discontinuities and geometry deviations can be accurately detected and visualized. However, the question remains in how far a given defect affects mechanical failure. We aim at bridging this gap by structural mechanics simulations based on CT images. In this study, we describe a method to predict the tensile strength and the location of crack initiation from the simulated stress distributions on the basis of local stress concentrations. We validate the method for tensile rods and real-life aeronautic parts which were additively manufactured from an AlSi10Mg aluminum alloy. Thirty-six specimens were manufactured in total, where different porosity patterns were deliberately inserted. The specimens were CT-scanned in high resolution. Structural mechanics simulations were carried out on basis of the CT images. An immersed-boundary finite elements code is used. The generation of a conforming simulation mesh is not required, making the code suitable especially for complex geometries like porous objects. The same test specimens were subjected to destructive physical tensile tests. We show that there is a very good correlation between the predicted and measured tensile strengths, and that the location of the first crack occurrence can be forecasted accurately.

Introduction

Structural parts almost inevitably differ from their ideal geometry due to the manufacturing process. In casting and injection moulding, gas or shrinkage pores are common kinds of defects. In additive manufacturing by sintering or melting, heat variations can cause imperfect bonding of the material granules. Industrial X-ray computed tomography (CT) allows for the non-destructive detection and visualization of many kinds of superficial or internal defects. With today’s CT scanners reaching spatial resolutions down to the micrometer scale, a CT image constitutes an accurate three dimensional digital representation of the scanned part. The spatial distribution and the morphological features of the porosity can thus be assessed in detail [1, 2]. However, the mere presence of porosity does not necessarily render a part unusable. In fact even highly porous parts can still be good for a specific purpose. In order to minimize false rejections and thus production costs it is desirable to assess the “effect of the defect”, i.e., to what degree a geometric defect affects the mechanical function. Work has been done to relate the detected porosity to fatigue behavior in aluminum castings [3] and laser-melted parts [4], sometimes combining the pore geometry with heuristic modeling of the pore physics [5, 6] or with analyzing stress concentrations at individual pores using finite element analysis [7].

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا