مشخصات مقاله | |
ترجمه عنوان مقاله | بهینه سازی پورتفولیوی میانگین-VaR (ارزش-در-ریسک) : یک روش غیر پارامتری |
عنوان انگلیسی مقاله | Mean-VaR portfolio optimization: A nonparametric approach |
انتشار | مقاله سال 2017 |
تعداد صفحات مقاله انگلیسی | 40 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.632 در سال 2017 |
شاخص H_index | 211 در سال 2019 |
شاخص SJR | 2.437 در سال 2017 |
شناسه ISSN | 0377-2217 |
شاخص Quartile (چارک) | Q1 در سال 2017 |
رشته های مرتبط | مدیریت – مهندسی کامپیوتر – حسابداری – اقتصاد |
گرایش های مرتبط | مدیریت مالی – مدیریت ریسک – الگوریتم و محاسبات – حسابداری مالی – اقتصاد مالی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | European Journal of Operational Research |
دانشگاه | Anglia Ruskin IT Research Institute, Faculty of Science and Technology, Anglia Ruskin University, Chelmsford, Essex CM11SQ, UK |
کلمات کلیدی | محاسبات تکاملی، بهینهسازی محدود چند-منظورهی پورتفولیوی ، ارزش در ریسک، شبیهسازی تاریخی غیر پارامتری |
کلمات کلیدی انگلیسی | Evolutionary computations, Multi-objective Constrained Portfolio Optimization, Value at Risk, Nonparametric Historical Simulation |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ejor.2017.01.005 |
کد محصول | E11902 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Outline Highlights Abstract Keywords 1. Introduction 2. Value-at-Risk: an overview 3. Multi-objective portfolio optimization problems 4. A learning-guided multi-objective evolutionary algorithm 5. Performance evaluation 6. Conclusions Acknowledgment References |
بخشی از متن مقاله: |
Abstract Portfolio optimization involves the optimal assignment of limited capital to different available financial assets to achieve a reasonable trade-off between profit and risk. We consider an alternative Markowitz’s mean–variance model in which the variance is replaced with an industry standard risk measure, Value-at-Risk (VaR), in order to better assess market risk exposure associated with financial and commodity asset price fluctuations. Realistic portfolio optimization in the mean-VaR framework is a challenging problem since it leads to a non-convex NP-hard problem which is computationally intractable. In this work, an efficient learning-guided hybrid multi-objective evolutionary algorithm (MODE-GL) is proposed to solve mean-VaR portfolio optimization problems with real-world constraints such as cardinality, quantity, pre-assignment, round-lot and class constraints. A learning-guided solution generation strategy is incorporated into the multi-objective optimization process to promote efficient convergence by guiding the evolutionary search towards promising regions of the search space. The proposed algorithm is compared with the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2). Experimental results using historical daily financial market data from S & P 100 and S & P 500 indices are presented. The results show that MODE-GL outperforms two existing techniques for this important class of portfolio investment problems in terms of solution quality and computational time. The results highlight that the proposed algorithm is able to solve the complex portfolio optimization without simplifications while obtaining good solutions in reasonable time and has significant potential for use in practice. Introduction Portfolio optimization is concerned with the optimal allocation of limited capital to available financial assets to achieve a trade-off between reward and risk. The classical mean-variance (MV) model [53, 54] formulates the portfolio selection problem as a bi-criteria optimization problem with a tradeoff between minimum risk and maximum expected return. In the MV model, risk is defined by a dispersion parameter and it is assumed that returns are normally or elliptically distributed. However, the distributions of returns are asymmetric and usually have excess kurtosis in practice [6, 20, 28, 45, 58]. Variance as a risk measure has thus been widely criticized by practitioners due to its symmetrical measure which equally weights desirable positive returns against undesirable negative ones. In fact, Markowitz recognized the inefficiencies embedded in the mean-variance approach and suggested the semi-variance risk measure [54] in order to measure the variability of returns below the mean. In practice, many rational investors are more concerned with under-performance rather than overperformance in a portfolio. |