مشخصات مقاله | |
ترجمه عنوان مقاله | زمان هم پایه سازی ملین قطبی و تغییر ناپذیری مستوی |
عنوان انگلیسی مقاله | Mellin polar coordinate moment and its affine invariance |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) | 3.962 در سال 2017 |
شاخص H_index | 168 در سال 2019 |
شاخص SJR | 1.065 در سال 2019 |
رشته های مرتبط | آمار |
گرایش های مرتبط | آمار ریاضی |
نوع ارائه مقاله | ژورنال |
مجله / کنفرانس | الگو شناسی – Pattern Recognition |
دانشگاه | Nanjing University of Information Science and Technology – China |
کلمات کلیدی | لحظه مختصات قطبی ملین، تبدیل ملین، انتگرال تکراری، معادلات لحظه ای آفین، تبدیل آفین |
کلمات کلیدی انگلیسی | Mellin polar coordinate moment, Mellin transform, Repeated integral, Affine moment invariants, Affine transform |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.patcog.2018.07.036 |
کد محصول | E9445 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1 Introduction 2 Mellin polar coordinate moment 3 Construction of affine invariants by MPCMs 4 Experiments 5 Conclusions References |
بخشی از متن مقاله: |
abstract The moment-based method is a fundamental approach to the extraction of affine invariants. However, only integer-order traditional moments can be used to construct affine invariants. No invariants can be constructed by moments with an order lower than 2. Consequently, the obtained invariants are sensitive to noise. In this paper, the moment order is generalized from integer to non-integer. However, the moment order cannot simply be generalized from integer to non-integer to achieve affine invariance. The difficulty of this generalization lies in the fact that the angular factor owing to shearing in the affine transform can hardly be eliminated for non-integer order moments. In order to address this problem, the Mellin polar coordinate moment (MPCM) is proposed, which is directly defined by a repeated integral. The angular factor can easily be eliminated by appropriately selecting a repeated integral. A method is provided for constructing affine invariants by means of MPCMs. The traditional affine moment invariants (AMIs) can be derived in terms of the proposed MPCM. Furthermore, affine invariants constructed with real-order (lower than 2) MPCMs can be derived using the proposed method. These invariants may be more robust to noise than AMIs. Several experiments were conducted to evaluate the proposed method performance. Introduction Images of an object captured from different viewpoints are often subject to perspective distortions [1–4]. If the object is small compared to the camera-to-scene distance, the perspective effect becomes negligible and the affine model provides a reasonable approximation of the projective model [2,5]. Therefore, the extraction of affine invariant features plays an important role in object recognition and registration [6–10]. This method has been used extensively in numerous fields, such as shape recognition and retrieval [11,12], watermarking [13], aircraft identification [14,15], texture classification [16], and image registration [17,18]. The moment-based method is the most commonly used technique for the extraction of affine invariant features. However, only integer-order moments can be used to construct affine invariants [4]. It has been reported that high-order moments are sensitive to noise [19]. Hence, in practice, a moment of the lowest possible order should be used [20]. For similarity transform (including only translation, scaling, and rotation), Fourier Mellin descriptors [21] can be viewed as the invariants constructed by complex number order moments. However, similarity transform is only a spe cial case of affine transform [4]. Thus far, an order of moments for constructing affine invariants can only be an integer. In this paper, we consider generalizing the moment order from integer to noninteger, and construct affine invariants by means of the proposed moment. |