مشخصات مقاله | |
ترجمه عنوان مقاله | مدیریت فراداده برای پایگاه داده های علمی |
عنوان انگلیسی مقاله | Metadata management for scientific databases |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 20 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.176 در سال 2018 |
شاخص H_index | 76 در سال 2019 |
شاخص SJR | 0.779 در سال 2018 |
شناسه ISSN | 0306-4379 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی فناوری اطلاعات، کامپیوتر |
گرایش های مرتبط | مدیریت سیستم های اطلاعات |
نوع ارائه مقاله |
ژورنال |
مجله | سیستم های اطلاعاتی – Information Systems |
دانشگاه | Politecnico di Milano, Italy |
کلمات کلیدی | مدیریت فراداده، بانکهای اطلاعاتی علمی، بهینه سازی پرس و جو |
کلمات کلیدی انگلیسی | Metadata management، Scientific databases، Query optimization |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.is.2018.10.002 |
کد محصول | E13234 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction and motivation 2- Scientific data model 3- Scientific query language 4- Optimization of ScQL queries 5- Applicability of the approach 6- Related work 7- Conclusions References |
بخشی از متن مقاله: |
Abstract Most scientific databases consist of datasets (or sources) which in turn include samples (or files) with an identical structure (or schema). In many cases, samples are associated with rich metadata, describing the process that leads to building them (e.g.: the experimental conditions used during sample generation). Metadata are typically used in scientific computations just for the initial data selection; at most, metadata about query results is recovered after executing the query, and associated with its results by post-processing. In this way, a large body of information that could be relevant for interpreting query results goes unused during query processing. Introduction and motivation The organizations of scientific databases are very different. In many scientific fields, such as biology and astronomy, big consortia produce large, well-organized data repositories for public use. In other contexts, such as public administrations, data are open but much less organized and much more dispersed. Other big data players, such as Internet companies or mobile phone operators, produce information mostly for internal use, but often support third parties in research studies (e.g., about consumers’ interests) by providing them with services for data retrieval. We abstract a scientific data source as a container of several datasets, that in turn consists of thousands of samples, one for each experimental condition, often stored as files and not within a database; typically, samples are described by metadata, i.e., descriptive information about the content and production process of each sample. In meteorology, typical metadata describe ‘‘the WDM station, the sources of meteorological data, and the period of record for which the data is available’’; then the samples describe millions of records registered at the station. In genomics, typical metadata describe ‘‘the technology used for DNA sequencing, the process of DNA preparation, the genotype and phenotype of the donor’’; then, samples describe millions of genomic regions collected during the experiment. Metadata support the selection of the relevant experimental data by means of user interfaces (e.g. see genomic repositories such as ENCODE (the Encyclopedia of Genomic Elements, [1]) or TCGA (The Cancer Genome Atlas, [2]). When a source exposes APIs or WEB interfaces, metadata associated to each sample (such as Twitter’s hashtags or timestamps) support data retrieval. |