دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات بیس کامپیوتردانلود رایگان مقالات پژوهشی کامپیوتردانلود رایگان مقالات ژورنالی کامپیوتردانلود رایگان مقالات سال 2019دانلود رایگان مقاله ISI الگوریتم و محاسبات به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023سال انتشارمقالات Q1 مهندسی کامپیوتر به زبان انگلیسیمقالات مهندسی کامپیوتر با ایمپکت فاکتور بالا به زبان انگلیسی

مقاله انگلیسی رایگان در مورد محلی سازی روبات های تلفن همراه – الزویر ۲۰۱۹

 

مشخصات مقاله
ترجمه عنوان مقاله فیلتر ذرات بهبود یافته برای محلی سازی روبات های تلفن همراه بر اساس بهینه سازی ازدحام ذرات
عنوان انگلیسی مقاله An improved particle filter for mobile robot localization based on particle swarm optimization
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۱۳ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۵٫۸۹۱ در سال ۲۰۱۸
شاخص H_index ۱۶۲ در سال ۲۰۱۹
شاخص SJR ۱٫۱۹۰ در سال ۲۰۱۸
شناسه ISSN ۰۹۵۷-۴۱۷۴
شاخص Quartile (چارک) Q1 در سال ۲۰۱۸
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط الگوریتم و محاسبات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس سیستم های خبره با کابردهای مربوطه – Expert Systems with Applications
دانشگاه  Department of Automation, University of Science and Technology of China, Hefei 230027, PR China
کلمات کلیدی روبات تلفن همراه، محلی سازی جهانی، ردیابی حالت محلی، فیلتر ذرات، بهینه سازی ازدحام ذرات
کلمات کلیدی انگلیسی Mobile robot، Global localization، Local pose tracking، Particle filter، Particle swarm optimization
شناسه دیجیتال – doi
https://doi.org/10.1016/j.eswa.2019.06.006
کد محصول  E13562
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Preliminaries
۳٫ Proposed algorithm
۴٫ Experimental results
۵٫ Conclusion
CRediT authorship contribution statement
Declaration of Competing Interest
Acknowledgments
References

 

بخشی از متن مقاله:
Abstract

As one of the most important issues in the field of mobile robotics, self-localization allows a mobile robot to identify and keep track of its own position and orientation as the robot moves through the environment. In this work, a hybrid localization approach based on the particle filter and particle swarm optimization algorithm is presented, focusing on the localization tasks when an a priori environment map is available. This results an accurate and robust particle filter based localization algorithm that is able to work in symmetrical environments. The performance of the proposed approach has been evaluated for indoor robot localization and compared with two benchmark algorithms. The experimental results show that the proposed method achieves robust and accurate positioning results in indoor environments, requiring fewer particles than the benchmark methods. This advance could be integrated in a wide range of mobile robot systems, helping to reduce the computational cost and improve the navigation efficiency.

Introduction

Along with the technological advancements in the field of mobile robotics, research interest in autonomous mobile robots has been increasing in the past decades. A diverse range of applications in rescue (Michael et al., 2014), mining (Ma & Mao, 2018), agriculture (Bengochea-Guevara, Conesa-Muñoz, Andújar, & Ribeiro, 2016), military (Miksik, Petyovsky, Zalud, & Jura, 2011) and civilian tasks (Choi, Lee, Viet, & Chung, 2017; Le, Phung, & Bouzerdoum, 2014; Song, Gao, Ding, Deng, & Chao, 2017) encourage researchers to carry out research works in mobile robotics. Self-localization is a prerequisite for successful deployment of an autonomous mobile robot since it identifies the robot’s pose (position and orientation) as it moves in the environment. By providing an “absolute” position estimate to the map frame, robot localization is one of the critical issues for mobile robot systems and it is typically the foundation of a variety of tasks, including map building, autonomous navigation, mobile manipulation, target tracking, etc. The mobile robot localization problem falls into two main categories: global localization (GL) and local pose tracking (relocalization) (Thrun, Burgard, & Fox, 2005). The local pose tracking problem assumes that the initial pose of the robot is already known, and it tries to keep track of the robot state over time. The GL problem is fundamentally different because no prior knowledge about the robot’s position is available, hence the robot has to locate itself from scratch and reduce the ambiguities of pose estimates.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا