مقاله انگلیسی رایگان در مورد الگوریتم تکاملی تقلیدی کاربرد در بهینه سازی مصرف سوخت خودرو ( الزویر )
مشخصات مقاله | |
عنوان مقاله | Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization |
ترجمه عنوان مقاله | الگوریتم تکامل مانکی کینگ: الگوریتم تکاملی جدید تقلیدی و کاربرد آن در بهینه سازی مصرف سوخت خودرو |
فرمت مقاله | |
نوع مقاله | ISI |
سال انتشار | |
تعداد صفحات مقاله | ۱۴ صفحه |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم ها و محاسبات و هوش مصنوعی |
مجله | سیستم های مبتنی بر دانش – Knowledge-Based Systems |
دانشگاه | دانشکده کامپیوتر، مؤسسه فناوری هاربین، دانشکده تحصیلات تکمیلی، چین |
کلمات کلیدی | تابع معیار، مصرف سوخت، الگوریتم تکاملی مانکی کینگ، تعداد ارزیابی تابع، متغییرات دسته ذرات، تردد خودرو |
کد محصول | ۷۴۱۹ |
نشریه | نشریه الزویر |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت الزویر (ساینس دایرکت) Sciencedirect – Elsevier |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
خرید ترجمه این مقاله | خرید ترجمه این مقاله |
بخشی از متن مقاله: |
نمونه متن ترجمه
۶- نتیجه گیری در این مقاله الگوریتم تکاملی مانکی کینگ را مطرح کردیم و به تحلیل سه طرح به روز رسانی پرداختیم و آنگاه از توابع معیار برای تایید الگوریتم پیشنهادی استفاده کردیم. مقایسه های بین الگوریتم خود و مدل های بهینه سازی دسته ذرات پیشرفته، انجام شد و نتایج آزمایشات نشان داد که الگوریتم ما سرعت و دقت همگرایی بهتری دارد. مدل های بهینه سازی دسته ذرات دارای نقطه ضعف عمده اند و اینکه اندازه جمعیت بزرگ به طور عمده نتایج بهینه سازی را بهبود نمی بخشد و لذا این ضعف در بهینه سازی مسائل ابعد بالا وجود دارد. الگوریتم ما استفاده بهتری از هماهنگی ذرات داشته و این مسئله به طور کامل در بهینه سازی مقیاس بزرگ نشان داده می شود. به کارگیری تردد خودروهای نواحی شهری در چارچوب مصرف حداقل سوخت بحث می شود و الگوریتم ما تردد با مصرف سوخت حداقل مطرح می کند و بهتر از الگوریتم A*و دیکسترا عمل می کند. الگوریتم ما همچنین می تواند به شکل بهینه سازی دسته ذرات و شکل تکامل دیفرانسیلی تجزیه شود. همچنین می توانیم از تکرارها/تولد های تکامل ذره با افزایش اندازه جمعیت ذره استفاده کنیم تا به تعداد برابر ارزیابی های توابع برسیم که عملکرد بهتری از خود نشان داده و این تحلیل در مقاله بعدی بحث خواهد شد. |