مشخصات مقاله | |
ترجمه عنوان مقاله | مروری بر استخراج ویژگی و ارزیابی عملکرد در تشخیص تشنج صرعی با استفاده از الکتروانسفالوگرافی (EEG) |
عنوان انگلیسی مقاله | A review of feature extraction and performance evaluation in epileptic seizure detection using EEG |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 16 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله مروری (Review Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.830 در سال 2019 |
شاخص H_index | 51 در سال 2020 |
شاخص SJR | 0.711 در سال 2019 |
شناسه ISSN | 1746-8094 |
شاخص Quartile (چارک) | Q2 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی پزشکی، پزشکی |
گرایش های مرتبط | بیوالکتریک، مغز و اعصاب |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | پردازش و کنترل سیگنال زیست پزشکی – Biomedical Signal Processing and Control |
دانشگاه | Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand |
کلمات کلیدی | تشخیص تشنج، الکتروانسفالوگرافی (EEG)، استخراج ویژگی، طبقه بندی |
کلمات کلیدی انگلیسی | Seizure detection، EEG، Feature extraction، classification |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.bspc.2019.101702 |
کد محصول | E14140 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Feature extraction 3. Epileptic seizure detection 4. Methods for feature evaluation 5. Experimental results 6. Conclusions Acknowledgement References |
بخشی از متن مقاله: |
Abstract
Since the manual detection of electrographic seizures in continuous electroencephalogram (EEG) monitoring is very time-consuming and requires a trained expert, attempts to develop automatic seizure detection are diverse and ongoing. Machine learning approaches are intensely being applied to this problem due to their ability to classify seizure conditions from a large amount of data, and provide pre-screened results for neurologists. Several features, data transformations, and classifiers have been explored to analyze and classify seizures via EEG signals. In the literature, some jointly-applied features used in the classification may have shared similar contributions, making them redundant in the learning process. Therefore, this paper aims to comprehensively summarize feature descriptions and their interpretations in characterizing epileptic seizures using EEG signals, as well as to review classification performance metrics. To provide meaningful information of feature selection, we conducted an experiment to examine the quality of each feature independently. The Bayesian error and non-parametric probability distribution estimation were employed to determine the significance of the individual features. Moreover, a redundancy analysis using a correlation-based feature selection was applied. The results showed that the following features – variance, energy, nonlinear energy, and Shannon entropy computed on a raw EEG signal, as well as variance, energy, kurtosis, and line length calculated on wavelet coefficients – were able to significantly capture the seizures. When compared with a baseline method of classifying all epochs as normal, an improvement of 4.77–13.51% in the Bayesian error was obtained. Introduction An epileptic seizure, as defined by the International League Against Epilepsy [1], is a temporary event of symptoms due to synchronization of abnormally excessive activities of neurons in the brain. It has been estimated that approximately 65 million people around the world are affected by epilepsy [2]. Nevertheless, it is still a time-consuming process for neurologists to review continuous electroencephalograms (EEGs) to monitor epileptic patients. Therefore, several researchers have developed differenttechniques that help neurologists to identify an epilepsy occurrence [3–5]. The whole process of automated epileptic seizure analysis primarily consists of data acquisition, signal pre-processing, feature extraction, feature or channel selection, and classification. This paper focuses on a selection of features commonly used in the literature, including statistical parameters (mean, variance, skewness, and kurtosis), amplitude-related parameters (energy, nonlinear energy, line length, maximum and minimum values) and entropyrelated measures. These features can be categorized based on their interpretation or the domain from which the features are calculated. While some studies have considered a particular group of features applicable to their proposed classification method [6–8], others have applied various groups of features extracted from the time, frequency, and time-frequency domains. |