مقاله انگلیسی رایگان در مورد مقاوم سازی لرزه ای سازه های بتنی با کامپوزیت های پلیمری – Sage 2017

مقاله انگلیسی رایگان در مورد مقاوم سازی لرزه ای سازه های بتنی با کامپوزیت های پلیمری – Sage 2017

 

مشخصات مقاله
ترجمه عنوان مقاله بهینه سازی طراحی عملکرد مبتنی بر قابلیت اطمینان برای مقاوم سازی لرزه ای سازه های بتنی مسلح با کامپوزیت های پلیمری تقویت شده با فیبر
عنوان انگلیسی مقاله Reliability-based performance design optimization for seismic retrofit of reinforced concrete buildings with fiber-reinforced polymer composites
انتشار مقاله سال ۲۰۱۷
تعداد صفحات مقاله انگلیسی  ۱۴ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه Sage
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۰٫۹۴۶ در سال ۲۰۱۷
شاخص H_index ۲۹ در سال ۲۰۱۹
شاخص SJR ۰٫۵۹۹ در سال ۲۰۱۷
شناسه ISSN
۱۳۶۹-۴۳۳۲
شاخص Quartile (چارک)
Q2 در سال ۲۰۱۷
رشته های مرتبط مهندسی عمران
گرایش های مرتبط سازه، زلزله
نوع ارائه مقاله
ژورنال
مجله / کنفرانس پیشرفت ها در مهندسی سازه – Advances in Structural Engineering
دانشگاه China State Construction Engineering (Hong Kong) Limited – China
کلمات کلیدی زمین لرزه، پلیمر تقویت شده فیبری، طراحی عملکرد، تحلیل pushover، بتن مسلح، قابلیت اطمینان، مقاوم سازی، بهینه سازی ساختاری
کلمات کلیدی انگلیسی earthquakes, fiber-reinforced polymers, performance design, pushover analysis, reinforced concrete, reliability, retrofit, structural optimization
شناسه دیجیتال – doi
https://doi.org/10.1177%2F1369433217733760
کد محصول E9493
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
Introduction
FRP-confined concrete
Reliability-based optimal design problem formulation
Explicit formulation of inelastic displacements
Reliability-based design procedure
An illustrative example
Conclusion
References

 

بخشی از متن مقاله:
Abstract

Fiber-reinforced polymer composites can be externally bonded to reinforced concrete members which provide an effective seismic retrofit strategy for reinforced concrete structures. For seismic retrofit of a complex building structure, due to the large number of structural members, an optimum design which ensures the use of the minimum amount of fiber-reinforced polymer to achieve a given level of seismic performance is highly desirable for economic reasons. In addition, such an optimum design approach is best built on a probabilistic basis so that various sources of uncertainties in the design process can be appropriately accounted for. This work therefore studies an efficient reliability-based optimization approach for the seismic retrofit design of reinforced concrete structures using fiber-reinforced polymer composites. The structural performance is assessed at the system level using nonlinear pushover analyses. In the proposed approach, the inelastic interstory drift ratios are modeled as indeterministic variables to consider the uncertainties of earthquake loading. By contrast, the thickness of the fiber-reinforced polymer jacket is considered as a deterministic design variable. The reliability-based design approach is formulated by minimizing fiber-reinforced polymer cost subject to prescribed structural reliability constraints. Using the results of nonlinear static pushover analyses and reliability analyses, the reliability index constraints are explicitly formulated with respect to the deterministic design variables based on the virtual work principle as well as Taylor series expansion. A numerical optimality criteria method is derived and programmed to solve this reliability-based nonlinear retrofit design optimization problem. A design example is included to illustrate the application of the new optimization approach.

Introduction

It is well-known that many uncertainties are involved in structural designs, especially in the case of seismic resistant designs (Beck et al., 1998; Charney, 2000; Frangopol, 1985; Gaxiola-Camacho et al., 2017; Lagaros et al., 2008; Zou et al., 2010). The structural responses under random excitations such as seismic loads cannot be precisely predicted; therefore, such design problems involve considerable uncertainties (Ghobarah et al., 2000). Although the probabilistic approach has been widely adopted in the design codes of most countries, its application in building structures is limited to structural member design using partial safety factors. That is, current design codes primarily focus on the ultimate safety check of structural members including beams and columns. A structural design based on current code procedures may not guarantee a satisfactory level of system reliability. Indeed, a system behavior has been regarded more important than a member behavior because of the high redundancy in building structures (Cheng et al., 1998; Kim and Wen, 1990). Performance-based seismic design, which can directly address the inelastic deformation induced in buildings by earthquakes, has become a standard for seismic design (Applied Technology Council (ATC), 1996; Chan and Zou, 2004; Fragiadakis et al., 2006; Gaxiola-Camacho et al., 2017; Lagaros et al., 2008; Zameeruddin and Sangle, 2016; Zou et al., 2007a). The pushover analysis method has been widely used in the performance-based design procedure to assess the nonlinear seismic performance of structures (Zou and Chan, 2005; Zou, 2012). Moreover, the performance design procedure should be based on probabilistic approaches, which account for the various sources of uncertainties and approximations as stated in FEMA445 (FEMA, 2006). A system reliability-based design approach should be employed directly, instead of using the member level partial factor approach as adopted in the design codes currently available. Furthermore, since the peak seismic interstory drift over the lifetime of a structure is uncertain, a performance parameter can be used and directly related to the reliability index of interstory drift (Beck et al., 1998). Although the deterministic structural design optimization has been widely used (Chan and Zou, 2004; Zou, 2012; Zou et al, 2014), the deterministic optimal structures may usually have higher failure probabilities (Frangopol and Klisinski, 1989). Structural reliability analysis methods shall be integrated into the reliabilitybased structural optimization process, in order to optimize structures with uncertainties. In the past few decades, reliability-based structural optimization has gained much research attention. Reliability-based optimization has special advantages over deterministic design optimization by considering reliability constraints. It provides a good balance among the structural reliability, initial cost, and other objectives, where specified performance requirements are satisfied.

ثبت دیدگاه