مقاله انگلیسی رایگان در مورد نانوذرات نیکل پلاسمون آراسته شده با فوتو کاتد LaFeO3 برای افزایش تولید هیدروژن – الزویر ۲۰۱۹

مقاله انگلیسی رایگان در مورد نانوذرات نیکل پلاسمون آراسته شده با فوتو کاتد LaFeO3 برای افزایش تولید هیدروژن – الزویر ۲۰۱۹

 

مشخصات مقاله
ترجمه عنوان مقاله نانوذرات نیکل پلاسمون آراسته شده با فوتو کاتد LaFeO3 برای افزایش تولید هیدروژن خورشیدی
عنوان انگلیسی مقاله Plasmonic nickel nanoparticles decorated on to LaFeO3 photocathode for enhanced solar hydrogen generation
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی  ۹ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۴٫۲۱۶ در سال ۲۰۱۸
شاخص H_index ۱۸۷ در سال ۲۰۱۹
شاخص SJR ۱٫۱ در سال ۲۰۱۸
شناسه ISSN ۰۳۶۰-۳۱۹۹
شاخص Quartile (چارک) Q2 در سال ۲۰۱۸
رشته های مرتبط مهندسی انرژی، شیمی
گرایش های مرتبط انرژی های تجدیدپذیر، نانو شیمی، شیمی تجزیه، سیستم های انرژی، فناوری های انرژی
نوع ارائه مقاله
ژورنال
مجله  مجله بین المللی انرژی هیدروژن – International Journal of Hydrogen Energy
دانشگاه Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
کلمات کلیدی شکافت فوتو الکتروشیمیایی آب، رزونانس پلاسمون سطحی، نانوذره ی Ni، تفاضل محدود حوزه زمانی، کاتد نوری، LaFeO3
کلمات کلیدی انگلیسی Photoelectrochemical water splitting، Surface plasmon resonance، Ni nanoparticle، Finite difference time domain، Photocathode، LaFeO3
شناسه دیجیتال – doi
https://doi.org/10.1016/j.ijhydene.2018.10.240
کد محصول E11398
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

Introduction

Method

Instrument details

Results and discussion

Conclusion

References

 

بخشی از متن مقاله:

Abstract

Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE, and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production, where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70–۱۰۰ nm for Surface Plasmon Resonance (SPR) enhancement.

Introduction

With climate change and global warming ever becoming the focus of concern for millions of people globally, there is a critical need to develop scalable and sustainable energy source assets. One of the possible way this can be accomplished is by harnessing the solar energy reaching the earth’s surface, which supplies enough energy every hour to meet humanities need for a year [1]. However, the predominant renewable energy sources, solar energy and wind energy, are highly intermittent and hence there is a dire need for the development of sustainable energy storage systems. The conversion of incoming photons from the sun light into storable chemical fuel (hydrogen), also known as solar fuel, is a highly attractive clean and sustainable energy storage solution. The stored hydrogen can be converted to electricity as per the demand using fuel cells. Currently, the major processes being explored for hydrogen generation are steam reforming [2,3], coal gasification [4], biomass derivatives [5], thermochemical [6] and biological processes [7]. However, most of these processes are energy intensive and generates a large carbon footprint. Photoelectrochemical (PEC) water splitting is a potential pathway in realising environmental friendly hydrogen production as it only requires semiconductor electrodes, water and sunlight [8]. The semiconductor materials require favourable band alignments for water reduction/oxidation, optimal bandgaps and high stability under reaction conditions [9]. Cu2O [10,11], WSe2 [12], CdTe [13], CuGaSe2 [8], Si [14], GaP [15] and InP [16] are photocathode materials which already have applications in solar assisted water splitting for hydrogen generation. However, due to availability, cost, stability and synthesis procedures there are limitations to their use. LaFeO3 (LFO), a non-toxic p-type semiconductor material with a direct bandgap of 2.4 eV, high stability and ability to generate hydrogen spontaneously without the need of an external bias [17], is a promising photocathode material for solar to hydrogen conversion. However, due to its low absorption coefficient, the current density is low, thus yielding lower amounts of hydrogen. Therefore, improving the material’s light extracting ability is crucial for improving the hydrogen yield capability of LFO.

ثبت دیدگاه