مشخصات مقاله | |
ترجمه عنوان مقاله | یک رویکرد عملی برای تشخیص حملات محروم سازی از سرویس توزیع شده با استفاده از یک روش تشخیص ترکیبی |
عنوان انگلیسی مقاله | A practical approach to detection of distributed denial-of-service attacks using a hybrid detection method |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journal List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.762 در سال 2018 |
شاخص H_index | 49 در سال 2019 |
شاخص SJR | 0.443 در سال 2018 |
شناسه ISSN | 0045-7906 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | امنیت اطلاعات، مهندسی نرم افزار، برنامه نویسی کامپیوتر |
نوع ارائه مقاله |
ژورنال |
مجله | کامپیوتر و مهندسی برق – Computers & Electrical Engineering |
دانشگاه | School of Computing University Union Belgrade, 6/6 Knez Mihailova, Belgrade, Serbia |
کلمات کلیدی | امنیت شبکه، حمله محروم سازی از سرویس، ميانگين موزون متحرك نمايي ، CUSUM، آنتروپی Packet |
کلمات کلیدی انگلیسی | Network security، Denial of service attack، Exponential weighted moving average، CUSUM، Packet entropy |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.compeleceng.2018.11.004 |
کد محصول | E11297 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Related work 3- The proposed detection method 4- Test scenario 5- Discussion of results 6- Conclusion References |
بخشی از متن مقاله: |
Abstract This paper presents a hybrid method for the detection of distributed denial-of-service (DDoS) attacks that combines feature-based and volume-based detection. Our approach is based on an exponential moving average algorithm for decision-making, applied to both entropy and packet number time series. The approach has been tested by performing a controlled DDoS experiment in a real academic network. The network setup and test scenarios including both high-rate and low-rate attacks are described in the paper. The performance of the proposed method is compared to the performance of two methods that are already known in the literature. One is based on the counting of SYN packets and is used for detection of SYN flood attacks, while the other is based on a CUSUM algorithm applied to the entropy time series. The results show the advantage of our approach compared to methods that are based on either entropy or number of packets only. Introduction Modern technological society is greatly dependent on Internet technology and online services. Internet services have ecome a non-exclusive part of everyday routine. Many of us check our e-mail as the first thing we do in the morning. This kind of service dependence has made room for a new kind of manipulation and has introduced attacks on network services. Denial of Service (DoS) attacks are among these attacks. Their goal is to make a targeted service unavailable by overloading service provider resources with false requests. With resources depleted, the service provider is not able to serve legitimate users. Nowadays, DoS is a commonly-used attacking method which inflicts significant financial loss on its targets [1]. According to [2,3] there are different types of DoS attacks. At the application level, attack detection is usually done by pattern recognition in the content of received packets. When a malicious pattern is detected, DoS prevention is achieved by blacklisting the IP address of the sender. To bypass this protection and to increase the efficiency of such attacks, attackers usually use distributed attacks (DDoS) by sending malicious packets from different source IP addresses, computers, networks or even continents. At present, detection of application-based attacks is very inefficient as a large number of packets has to be deeply inspected to recognize an attack pattern. We are tackling this problem at a much lower, network (or in some cases transport) layer, where deep packet analysis is not required. |