مشخصات مقاله | |
ترجمه عنوان مقاله | اکوسیستم مدیریت کیفیت برای نگهداری و تعمیرات پیشگویانه در دوره صنعت 4.0 |
عنوان انگلیسی مقاله | The quality management ecosystem for predictive maintenance in the Industry 4.0 era |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه اسپرینگر |
نوع نگارش مقاله |
Theoretical Artical |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
شناسه ISSN | 2363-7021 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی صنایع، مدیریت |
گرایش های مرتبط | مدیریت نوآوری و فناوری، مدیریت کیفیت و بهره وری، تکنولوژی صنعتی، بهینه سازی سیستم ها |
نوع ارائه مقاله |
ژورنال |
مجله | مجله بین المللی نوآوری کیفیت – International Journal Of Quality Innovation |
دانشگاه | College of Business, University of Nebraska-Lincoln, Lincoln, NE, USA |
کلمات کلیدی | نگهداری و تعمیرات پیشگویانه، مدیریت کیفیت، تجزیه و تحلیل داده های بزرگ، هوش مصنوعی (AI)، ساختمان پلتفرم، فناوری اطلاعات و ارتباطات (ICT)، زمان واقعی |
کلمات کلیدی انگلیسی | Predictive maintenance، Quality management، Big data analytics، Artificial intelligence (AI)، Platform construction، Information and communication technology (ICT)، Real-time |
شناسه دیجیتال – doi |
https://doi.org/10.1186/s40887-019-0029-5 |
کد محصول | E13257 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
Introduction Review of relevant literature Case description of predictive maintenance Conclusions References |
بخشی از متن مقاله: |
Abstract The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five realworld cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals. Introduction In today’s competitive global environment, businesses need to be agile, flexible, resilient, and possess dynamic capabilities [1, 2]. The advent of advanced digital technologies makes it possible for firms to completely innovate the concept of quality management. A living ecosystem equipped with advanced digital technologies (e.g., smart sensors, machine learning, big data analytics, and artificial intelligence (AI)) can be developed to manage quality [2]. On August 14, 2018, a 200-m section of the Ponte Morandi Bridge (built in 1968) in Genoa, Italy, collapsed causing 41 deaths, 5 missing, and 15 injured. The main causes of bridge collapse were aging and lack of bridge management. Incidents such as this highlight the importance of bridge maintenance. Structural health monitoring (SHM), a new technique developed for structure maintenance, is an up-to-date technology-based system that analyzes weaknesses of existing systems, such as locating local and global damage structure and the significance of such damages. The speed and precision of decision-making for bridge repair and maintenance are facilitated by real-time monitoring of bridge conditions. Bansal et al. [3] proposed a real-time predictive maintenance system using neural network methods, while Shi and Zeng [4] suggested a condition-based maintenance strategy that considers economic factors for predictive maintenance in real time. Predictive maintenance, also known as condition-based maintenance, is possible today due to the advanced digital technologies [3–6]. |