مقاله انگلیسی رایگان در مورد پیشرفت های اخیر در شناسایی آسیب سازه ها با استفاده از داده کاوی – Scielo 2017

samplepic2

 

مشخصات مقاله
ترجمه عنوان مقاله پیشرفت های اخیر در شناسایی آسیب سازه ها با استفاده از داده کاوی
عنوان انگلیسی مقاله Recent Developments in Damage Identification of Structures Using Data Mining
انتشار  مقاله سال ۲۰۱۷
تعداد صفحات مقاله انگلیسی  ۱۹ صفحه
هزینه  دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده  نشریه Scielo
نوع نگارش مقاله مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR – DOAJ
نوع مقاله
ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۰٫۹۰۵ در سال ۲۰۱۷
شاخص H_index ۲۱ در سال ۲۰۱۸
شاخص SJR ۰٫۵۲۲ در سال ۲۰۱۸
رشته های مرتبط  مهندسی عمران – مهندسی کامپیوتر
گرایش های مرتبط  سازه – هوش مصنوعی – الگوریتم و محاسبات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس  Latin American Journal of Solids and Structures
دانشگاه StrucHMRSGroup, Department of Civil Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
تشخیص خرابی سازه؛ روش داده کاوی؛ شبکه های عصبی مصنوعی؛ الگوریتم ژنتیک؛ تجزیه و تحلیل مولفه اصلی
کلمات کلیدی انگلیسی  Structural damage detection; data mining technique; artificial neural network; genetic algorithm; principal component analysis
شناسه دیجیتال – doi https://doi.org/10.1590/1679-78254378
کد محصول E11697
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

 

بخشی از متن مقاله:

ABSTRACT

Civil structures are usually prone to damage during their service life and it leads them to loss their serviceability and safety. Thus, damage assessment can guarantee the integrity of structures. As a result, a structural damage detection approach including two main components, a set of accelerometers to record the response data and a data mining (DM) procedure, is widely used to extract the information on the structural health condition. In the last decades, DM has provided numerous solutions to structural health monitoring (SHM) problems as an all-inclusive technique due to its powerful computational ability. This paper presents the first attempt to illustrate the data mining techniques (DMTs) applications in SHM through an intensive review of those articles dealing with the use of DMTs aimed for classification-, prediction- and optimization-based data mining methods. According to this categorization, applications of DMTs with respect to SHM research area are classified and it is concluded that, applications of DMTs in the SHM domain have increasingly been implemented, in the last decade and the most popular techniques in the area were artificial neural network (ANN), principal component analysis (PCA) and genetic algorithm (GA), respectively.

INTRODUCTION

Structural systems in civil engineering such as tall buildings, long hydraulic structures, and long span bridges are damage-prone under different loadings such as fatigue, aging, overloading, earthquakes and other natural disasters during their service life (Duan and Zhang 2006; Hakim and Razak 2014a; Khanzaei et al. 2015; Ghaedi et al. 2016, 2017a, b). Existence of damage can disturb functionality and safety of the structure. Therefore, damage detection is one of the most important factors in order to guarantee the integrity and safety of civil structures (Kanwar et al. 2007; Xu et al. 2012; Hakim and Razak 2014b; Hanif et al. 2016).

Many damage identification techniques have been applied to civil structures. For instance, visual inspections are the most common damage detection techniques. However, they have been used in detecting damage of many structures; they are time consuming and costly. These techniques cannot also be used for continuous monitoring of structures (Razak and Choi 2001; He 2008).

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *