دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی کامپیوتردانلود رایگان مقالات پژوهشی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات ژورنالی کامپیوتردانلود رایگان مقالات ژورنالی مهندسی فناوری اطلاعات ITدانلود رایگان مقاله ISI اینترنت و شبکه های گسترده به زبان انگلیسیدانلود رایگان مقاله ISI محاسبات ابری یا رایانش ابری به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی فناوری اطلاعات به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی نرم افزار به زبان انگلیسی
مقاله انگلیسی رایگان در مورد کاهش هزینه های تامین منابع با استفاده از نمونه های موقعیت EC2 با مدل های پیش بینی – الزویر ۲۰۱۹
مشخصات مقاله | |
ترجمه عنوان مقاله | کاهش هزینه های تامین منابع با استفاده از نمونه های موقعیت EC2 با مدل های پیش بینی |
عنوان انگلیسی مقاله | Reducing the price of resource provisioning using EC2 spot instances with prediction models |
انتشار | مقاله سال ۲۰۱۹ |
تعداد صفحات مقاله انگلیسی | ۵۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۵٫۳۴۱ در سال ۲۰۱۷ |
شاخص H_index | ۸۵ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۸۴۴ در سال ۲۰۱۷ |
شناسه ISSN | ۰۱۶۷-۷۳۹X |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۷ |
رشته های مرتبط | مهندسی کامپیوتر – مهندسی فناوری اطلاعات |
گرایش های مرتبط | رایانش ابری – مهندسی نرم افزار – اینترنت و شبکه های گسترده |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | سیستم های کامپیوتری نسل آینده – Future Generation Computer Systems |
دانشگاه | Aragón Institute of Engineering Research (I3A), Department of Computer Science and Systems Engineering, Universidad de Zaragoza, Spain |
کلمات کلیدی | محاسبات ابری، تأمین، نمونه های موقعیت، EC2 آمازون، محدودیت های هزینه |
کلمات کلیدی انگلیسی | Cloud computing, Provisioning, Spot Instances, Amazon EC2, cost constraints |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.future.2019.01.025 |
کد محصول | E12060 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Outline Highlights Abstract Keywords ۱٫ Introduction ۲٫ Technical background: The Amazon EC2 Spot Instances service ۳٫ Related work ۴٫ A framework for the analysis of spot instances ۵٫ Modeling EC2 spot instances provisioning costs ۶٫ Evaluation and experimentation ۷٫ Automatic generation of provisioning plans in Amazon EC2 ۸٫ The new amazon EC2 spot pricing model ۹٫ Conclusions Acknowledgments References |
بخشی از متن مقاله: |
Abstract The increasing demand of computing resources has boosted the use of cloud computing providers. This has raised a new dimension in which the connections between resource usage and costs have to be considered from an organizational perspective. As a part of its EC2 service, Amazon introduced spot instances (SI) as a cheap public infrastructure, but at the price of not ensuring reliability of the service. On the Amazon SI model, hired instances can be abruptly terminated by the service provider when necessary. The interface for managing SI is based on a bidding strategy that depends on non-public Amazon pricing strategies, which makes complicated for users to apply any scheduling or resource provisioning strategy based on such (cheaper) resources. Although it is believed that the use of the EC2 SIs infrastructure can reduce costs for final users, a deep review of literature concludes that their characteristics and possibilities have not yet been deeply explored. In this work we present a framework for the analysis of the EC2 SIs infrastructure that uses the price history of such resources in order to classify the SI availability zones and then generate price prediction models adapted to each class. The proposed models are validated through a formal experimentation process. As a result, these models are applied to generate resource provisioning plans that get the optimal price when using the SI infrastructure in a real scenario. Finally, the recent changes that Amazon has introduced in the SI model and how this work can adapt to these changes is discussed. |