مقاله انگلیسی رایگان در مورد یادگیری ویژگی نمایش برای تشخیص چهره با وضوح پایین – الزویر ۲۰۲۰
مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری ویژگی نمایش مبتنی بر پچ چند مقیاسی برای تشخیص چهره با وضوح پایین |
عنوان انگلیسی مقاله | Multi-scale patch based representation feature learning for low-resolution face recognition |
انتشار | مقاله سال ۲۰۲۰ |
تعداد صفحات مقاله انگلیسی | ۲۰ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۶٫۰۳۱ در سال ۲۰۱۹ |
شاخص H_index | ۱۱۰ در سال ۲۰۲۰ |
شاخص SJR | ۱٫۲۱۶ در سال ۲۰۱۹ |
شناسه ISSN | ۱۵۶۸-۴۹۴۶ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۹ |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | هوش مصنوعی، مهندسی نرم افزار |
نوع ارائه مقاله |
ژورنال |
مجله | محاسبات نرم کاربردی – Applied Soft Computing |
دانشگاه | Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China |
کلمات کلیدی | تشخیص چهره، وضوح پایین، یادگیری ویژگی، پچ چند مقیاسی |
کلمات کلیدی انگلیسی | Face recognition، Low-resolution، Feature learning، Multi-scale patch |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.asoc.2020.106183 |
کد محصول | E14717 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
۱- Introduction ۲- The proposed MSPRFL ۳- Experiments and discussions ۴- Conclusions References |
بخشی از متن مقاله: |
Abstract
In practical video surveillance, the quality of facial regions of interest is usually affected by the large distances between the objects and surveillance cameras, which undoubtedly degrade the recognition performance. Existing methods usually consider the holistic representations, while neglecting the complementary information from different patch scales. To tackle this problem, this paper proposes a multi-scale patch based representation feature learning (MSPRFL) scheme for low-resolution face recognition problem. Specifically, the proposed MSPRFL approach first exploits multi-level information to learn more accurate resolution-robust representation features of each patch with the help of a training dataset. Then, we exploit these learned resolution-robust representation features to reduce the resolution discrepancy by integrating the recognition results from all patches. Finally, by considering the complementary discriminative ability from different patch scales, we try to fuse the multi-scale outputs by learning scale weights via an ensemble optimization model. We further verify the efficiency of the proposed MSPRFL on low-resolution face recognition by the comparison experiments on several commonly used face datasets. Introduction Face image recognition, as one of the most commonly used biometrics technologies, has become the research hotspot of the pattern recognition community in past decades [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Generally, most of the current methods perform well on the cases that the acquired region of interest (ROI) has high image resolution and contains enough discriminative information for recognition tasks. However, in real-world robotics and video surveillance applications, the observed faces generally have low-resolution (LR) together with pose and illumination variations, while the referenced faces are always enrolled with high resolution (HR). The main challenge is to match an LR probe face with limited details against HR gallery faces. We name this kind of problem as low-resolution face recognition (LRFR). An alternative solution is down-sampling the HR galleries and then matching in the same resolution space. In this way, the resolution discrepancy is reduced at the expense of losing the discriminative facial details in the gallery. Generally, there are two typical categories to address the LRFR problem. One is superresolution approaches, which first synthesize the target HR faces from the observed LR image, and then utilize traditional face recognition approaches in the common resolution domain. The other is resolution-robust feature extraction methods, which directly extract discriminative features from respective domains, thus obtain better performance than superresolution methods. |