مشخصات مقاله | |
ترجمه عنوان مقاله | تمرکز تنش برشی در ریل های تراموا: نتایج حاصل از تجزیه و تحلیل عنصر محدود دو بعدی مقطعی میله بر پایه نظریه |
عنوان انگلیسی مقاله | Shear stress concentrations in tramway rails: Results from beam theorybased cross-sectional 2D Finite Element analyses |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.604 در سال 2018 |
شاخص H_index | 114 در سال 2019 |
شاخص SJR | 1.628 در سال 2018 |
شناسه ISSN | 0141-0296 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی عمران، ریاضی |
گرایش های مرتبط | مهندسی راه و ترابری، آنالیز عددی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | سازه های مهندسی – Engineering Structures |
دانشگاه | Institute for Mechanics of Materials and Structures, TU Wien – Vienna University of Technology, Vienna, Austria |
کلمات کلیدی | ریل های شیاردار، برش، پیچش، روش عنصر محدود، آسیب |
کلمات کلیدی انگلیسی | Grooved rails، Shear، Torsion، Finite Element method، Damage |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.engstruct.2019.03.081 |
کد محصول | E12448 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Definition of studied type of rail 3. Bernoulli and Saint-Venant beams – reduced elastostatics model 4. Sub-problem I: Shear force-induced shear stresses 5. Sub-problem II: Torsion-induced shear stresses 6. Critical loading scenarios: Unit shear forces due to wheel contact 7. Discussion Acknowledgments Appendix A. Nomenclature References |
بخشی از متن مقاله: |
Abstract
During their lifetimes, tramway networks become increasingly susceptible to mechanical damage in the form of rail fractures. Understanding the underlying reasons, and initiating appropriate countermeasures may be facilitated by (computational) modeling tools. The development of such tools calls for a sound theoretical foundation. The latter is still largely missing, as the cross-sectional shapes of grooved rails employed in tramway networks differ significantly from those of (in this regard) well-investigated railroad systems. As a first step towards closing this knowledge gap, we here report on a novel beam theory approach allowing to compute typical shear stress distributions throughout the cross sections of grooved rails. Based on classical concepts, such as Bernoulli and Saint-Venant beam kinematics, cross-sectional boundary value problems for the related shear stress distributions are derived, and corresponding solutions are obtained in the form of 2D Finite Element approximations. This way, it is revealed that practically relevant loading scenarios induce distinctive shear stress concentrations. Remarkably, the positions of the latter agree well with fracture patterns observed in situ. Introduction In many urban areas, the tramway network is the backbone of the local public transport system [1–4]. Hence, the reliability of tramway networks is key for the functionality of public life in such areas. The primary causes for disturbances are fractured rails [5,6], as well as degradation due to wear and environmental influences [7,8]. It is evident that rail fractures occur if the loads acting onto the rails induce stress states which exceed the strengths of the steels the rails are made of. A purely experimental approach to the challenge of predicting where and when fractures occur turns out as difficult (if not impossible), given the huge dimensions of the problem (in terms of both size and load magnitude). This calls for computational approaches, and the current state of the art in the field may be briefly sketched as follows: The contact forces between wheel and rail have been quantified for different types of rails (i.e. railroad, subway, and tramway) [5,9–11]. Other modeling approaches are concerned with the estimation of residual stresses. This is often done based on the Finite Element (FE) method, with the main focus lying on Vignole rails [12–18], and an only marginal amount of work spent on tramway rails [19]. Residual stresses have been shown to arise in the rails from the straightening and bending processes prior to mounting the rails [10,12–18,20,21], and change, over time, due to the overrunning by wheels [9–11,22–24], hence under standard operation conditions [22–25]. Numerical methods have also been developed for crack propagation analysis in Vignole rails, either under consideration of residual stresses [27,26], or neglecting the latter [24,28]. |