مشخصات مقاله | |
ترجمه عنوان مقاله | مطالعه در مورد اثرات کوپلینگ انعطاف پذیر استوار توربین های بادی شناور در دریا |
عنوان انگلیسی مقاله | Study on Rigid-Flexible Coupling Effects of Floating Offshore Wind Turbines |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه اسپرینگر |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
0.951 در سال 2018 |
شاخص H_index | 21 در سال 2019 |
شاخص SJR | 0.421 در سال 2018 |
شناسه ISSN | 0890-5487 |
شاخص Quartile (چارک) | Q3 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مکانیک، مهندسی انرژی |
گرایش های مرتبط | تبدیل انرژی، طراحی کاربردی، سیستم های انرژی، قناوری های انرژی، طراحی جامدات |
نوع ارائه مقاله |
ژورنال |
مجله | China Ocean Engineering |
دانشگاه | State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
کلمات کلیدی | توربین بادی شناور در دریا، اثر سفت کننده پویا، مدل پویا همبسته غیر خطی، DARwind |
کلمات کلیدی انگلیسی | floating offshore wind turbine، dynamic stiffening effect، nonlinear coupled dynamic model، DARwind |
شناسه دیجیتال – doi |
https://doi.org/10.1007/s13344-019-0001-0 |
کد محصول | E13080 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Theories and methodology 3- Results and discussion 4- Conclusions References |
بخشی از متن مقاله: |
Abstract In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently, investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions. Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well. Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts. Introduction In recent years, floating offshore wind turbines (FOWTs) have been receiving increasing attention due to their prominent advantages, such as steadier and stronger wind available resources, lower operational noise, reduced visual pollution and fewer space limitations (Karimirad et al., 2011; Bachynski and Moan, 2012; Pérez-Collazo et al., 2015; Ma et al., 2015). FOWTs are complex rigid-flexible coupled multi-body systems (Namik and Stol, 2010; Wang and Sweetman, 2013; Nejad et al., 2015). Moreover, because the slender blades of an FOWT system typically work at a high rotational speed and are influenced by the motions of the floating platform, rigid-flexible coupled dynamic responses of FOWT systems are more complicated than those of the fixed bottom wind turbines. Rigid-flexible coupled multi-body dynamics have received considerable attentions during the development of modern high-speed airplanes (Shabana, 1997; Bauchau, 2011). In the 1970s, Winfrey (1971) proposed the “kinetoelastodynamics” (KED) method to model the dynamic behaviour of rigid-flexible coupled multi-body systems. In this method, the system is first modelled as a rigid multi-body system to calculate the motion and inertia forces on the system. |