دانلود رایگان مقالات اسپرینگر - springerدانلود رایگان مقالات سال 2017دانلود رایگان مقاله ISI بازاریابی به زبان انگلیسیدانلود رایگان مقاله ISI تجارت الکترونیک به زبان انگلیسیدانلود رایگان مقاله ISI رسانه اجتماعی به زبان انگلیسیدانلود رایگان مقاله ISI مدیریت به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مدیریت فناوری اطلاعات به زبان انگلیسیسال انتشار

مقاله انگلیسی رایگان در مورد تباه کننده های بازاریابی رسانه های اجتماعی – اسپرینگر ۲۰۱۷

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۷
تعداد صفحات مقاله انگلیسی ۳۱ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه اسپرینگر
نوع مقاله ISI
عنوان انگلیسی مقاله Who are the spoilers in social media marketing? Incremental learning of latent semantics for social spam detection
ترجمه عنوان مقاله تباه کننده های بازاریابی رسانه های اجتماعی؟ یادگیری افزایشی معنی شناسی پنهان برای شناسایی هرزنامه های اجتماعی
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مدیریت
گرایش های مرتبط مدیریت فناوری اطلاعات، تجارت الکترونیک و بازاریابی
مجله تحقیق تجارت الکترونیک – Electronic Commerce Research
دانشگاه City University of Hong Kong – People’s Republic of China
کلمات کلیدی هرزنامه اجتماعی، تشخیص هرزنامه، مدل سازی موضوع، یادگیری افزایشی، فراگیری ماشین، اطلاعات بزرگ
کلمات کلیدی انگلیسی Social spam, Spam detection, Topic modeling, Incremental learning, Machine learning, Big data
کد محصول E7181
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱ Introduction

Spam became prevalent in the late 1990s and early 2000s when email was considered to be the primary tool for information exchange among individuals and firms. With the introduction of email spam filters, spammers have started looking at other platforms for better payoffs. One of these ‘‘money-making’’ platforms for spammers are social media sites (SMSs) that play an increasingly important role in our daily lives [1]. Nowadays, online social media data exhibits the 4Vs characteristics that are often used to describe Big Data, namely volume, velocity, variety, and veracity [2]. In terms of volume, the number of active users on Facebook and Twitter has reached, respectively, 1.55 and 0.32 billion in November 2015.1 There are over 500 million tweets generated on a daily basis.2 Besides signifying its importance in our daily lives, the features of online social media (i.e., creation and exchange of user-generated content, support for collective actions, and facilitation of diverse social interactions) denote its indispensable function of being a business tool for promoting e-commerce products and services. Thus, increasingly more e-commerce retailers choose online social media as a main marketing platform or a new ‘‘social CRM’’ tool that fosters instant interactions with potential consumers. SMSs likewise provide spammers with unprecedented opportunities to launch various attacks. Spammers perform deceptive acts [3, 4], conduct unfair trading activities [5, 6], and even make illegal profits [7] by posting social spam on SMSs. Social spam refers to low-quality information for which users do not ask or specifically subscribe to [8]. Social spam is used to launch phishing attacks [9], promote adverse websites [10], distribute malwares [11], and spread adverse messages [12, 13]. Embedded URLs in social spam direct users to adverts, malware, or pornographic websites (see Fig. 1). According to Nexgate’s state of social media spam report, there has been a 355 % growth of social spam in the first half of 2013 [14]. As well it has been revealed that more spammers were found on Facebook and YouTube than any other SMS. Grier et al. [15] reported that 8 % of the 25 million URLs posted on Twitter were phishes, malware, and scams.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا