مقاله انگلیسی رایگان در مورد برنامه ریزی استراتژیک مبتنی بر داده ها درباره مقاوم سازی انرژی ساختمان – الزویر ۲۰۱۹

elsevier

 

مشخصات مقاله
ترجمه عنوان مقاله برنامه ریزی استراتژیک مبتنی بر داده ها درباره مقاوم سازی انرژی ساختمان: موردی از استکهلم
عنوان انگلیسی مقاله Data-driven strategic planning of building energy retrofitting: The case of Stockholm
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۱۵ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۷٫۰۹۶ در سال ۲۰۱۸
شاخص H_index ۱۵۰ در سال ۲۰۱۹
شاخص SJR ۱٫۶۲۰ در سال ۲۰۱۸
شناسه ISSN ۰۹۵۹-۶۵۲۶
شاخص Quartile (چارک) Q1 در سال ۲۰۱۸
مدل مفهومی دارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مهندسی عمران، معماری
گرایش های مرتبط مدیریت ساخت، سازه، تکنولوژی معماری
نوع ارائه مقاله
ژورنال
مجله مجله تولید پاک – Journal of Cleaner Production
دانشگاه Research Group for Urban Analytics and Transitions (UrbanT), Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Teknikringen 10b, 100 44, Stockholm, Sweden
کلمات کلیدی برنامه ریزی انرژی شهری، مقاوم سازی انرژی ساختمان، مدل سازی انرژی ساختمان شهری، داده های metered با وضوح بالا، بهره وری انرژی شهری، استکهلم
کلمات کلیدی انگلیسی Urban energy planning، Building energy retrofitting، Urban building energy modelling، High-resolution metered data، Urban energy efficiency، Stockholm
شناسه دیجیتال – doi
https://doi.org/10.1016/j.jclepro.2019.05.373
کد محصول E12534
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

۱- Introduction

۲- Background

۳- Methods

۴- Results

۵- Discussion

۶- Conclusions

References

 

بخشی از متن مقاله:

Abstract

Limiting global warming to 1.5 °C requires a substantial decrease in the average carbon intensity of buildings, which implies a need for decision-support systems to enable large-scale energy efficiency improvements in existing building stock. This paper presents a novel data-driven approach to strategic planning of building energy retrofitting. The approach is based on the urban building energy model (UBEM), using data about actual building heat energy consumption, energy performance certificates and reference databases. Aggregated projections of the energy performance of each building are used for holistic city-level analysis of retrofitting strategies considering multiple objectives, such as energy saving, emissions reduction and required social investment. The approach is illustrated by the case of Stockholm, where three retrofitting packages (heat recovery ventilation; energy-efficient windows; and a combination of these) were considered for multi-family residential buildings constructed 1946–۱۹۷۵٫ This identified potential for decreasing heat demand by 334 GWh (18%) and consequent emissions reduction by 19.6 kt-CO2 per year. The proposed method allows the change in total energy demand from large-scale retrofitting to be assessed and explores its impact on the supply side. It thus enables more precisely targeted and better coordinated energy efficiency programmes. The case of Stockholm demonstrates the potential of rich urban energy datasets and data science techniques for better decision making and strategic planning.

Introduction

Reaching the Paris Agreement goal of limiting climate change well below 2 C requires transformation of energy systems globally. The world is becoming increasingly urbanised, with more than 50% of the global population currently living in cities (X. Wang et al., 2017). Thus, sustainable and viable cities play an important role in energy system transformation. In 2014, buildings accounted for 31% of final energy use and 8% of energy-derived CO2 emissions globally. Coal and gas are commonly used for supplying heating and cooling. The more stringent target for global warming, of 1.5 C, implies that the carbon intensity of buildings must be limited to on average 36 g/ kWh. This can be achieved through a combination of reduced heating and cooling demand, and/or transforming supplying energy to buildings (Rogelj et al., 2018). In buildings, about 50% of the energy demand comes from space heating and cooling and 16% from water heating (IEA, 2017a). While conserving energy through the use of more efficient appliances could play an important role (Huebner et al., 2016), heating and cooling account for almost 80% of direct CO2 emissions from buildings (IEA, 2017a). Therefore, reducing the space heating and cooling demand, combined with decarbonisation of district heating and electricity generation, is recognised as an essential strategy in realising a vision of ‘decarbonised buildings’ (EU Commission, 2016).

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد.