مشخصات مقاله | |
ترجمه عنوان مقاله | بهینه سازی مقید ازدحام ذرات چند گروهی بدون سرعت برای مشکلات بهینه سازی محدود |
عنوان انگلیسی مقاله | A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 23 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.891 در سال 2019 |
شاخص H_index | 162 در سال 2020 |
شاخص SJR | 1.190 در سال 2019 |
شناسه ISSN | 0957-4174 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم ها و محاسبات، هوش مصنوعی و مهندسی نرم افزار |
نوع ارائه مقاله |
ژورنال |
مجله | سیستم های خبره با برنامه های کاربردی – Expert Systems With Applications |
دانشگاه | Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia |
کلمات کلیدی | بهینه سازی محدود، بهینه سازی ازدحام ذرات، تکامل ازدحام کنونی، تکامل ازدحامی حافظه |
کلمات کلیدی انگلیسی | Constrained optimization، Particle swarm optimization، Current swarm evolution، Memory swarm evolution |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.eswa.2019.112882 |
کد محصول | E14446 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Related works 3- Constrained multi-swarm particle swarm optimization without velocity 4- Simulation results 5- Conclusion References |
بخشی از متن مقاله: |
Abstract The original particle swarm optimization (PSO) is not able to tackle constrained optimization problems (COPs) due to the absence of constraint handling techniques. Furthermore, most existing PSO variants can only perform well in certain types of optimization problem and tend to suffer with premature convergence due to the limited search operator and directional information used to guide the search process. An improved PSO variant known as the constrained multi-swarm particle swarm optimization without velocity (CMPSOWV) is proposed in this paper to overcome the aforementioned drawbacks. Particularly, a constraint handling technique is first incorporated into CMPSOWV to guide population searching towards the feasible regions of search space before optimizing the objective function within the feasible regions. Two evolution phases known as the current swarm evolution and memory swarm evolution are also introduced to offer the multiple search operators for each CMPSOWV particle, aiming to improve the robustness of algorithm in solving different types of COPs. Finally, two diversity maintenance schemes of multi-swarm technique and probabilistic mutation operator are incorporated to prevent the premature convergence of CMPSOWV. The overall optimization performances of CMPSOWV in solving the CEC 2006 and CEC 2017 benchmark functions and real-world engineering design problems are compared with selected constrained optimization algorithms. Extensive simulation results report that the proposed CMPSOWV has demonstrated the best search accuracy among all compared methods in solving majority of problems. Introduction The field of optimization has received significant attention in recent years as a promising tool for decision making. Depending on the objective function used to describe a specific goal to be achieved by an optimization problem, the optimal combination of decision variables obtained can either lead to the smallest objective function value for minimization problems or the largest objective function value for maximization problems. Majority of the real-world engineering application such as product development are considered as the constrained optimization problems (COPs). The objective functions used to describe the preliminary design model of product are generally represented using a set of analytical equations, while the product specifications are formulated as technical constraints. The presence of optimization constraints tend to reduce the feasible regions of search space, resulting in the COPs become more difficult to solve as compared to the unconstrained counterparts (Mezura-Montes & Coello Coello, 2011; Michalewicz & Schoenauer, 1996; Runarsson & Xin, 2000). In order to solve the COPs successfully, the optimal set of decision variables obtained not only need to optimize the objective functions, but also to satisfy all technical constraints (Mezura-Montes & Coello Coello, 2011; Michalewicz & Schoenauer, 1996; Runarsson & Xin, 2000). |