مقاله انگلیسی رایگان در مورد عکسبرداری در زیر آب و مه زدایی تصویری با تقسیم بندی منطقه بخار خالص – الزویر ۲۰۱۸
مشخصات مقاله | |
ترجمه عنوان مقاله | عکسبرداری در زیر آب و مه زدایی تصویری با تقسیم بندی منطقه بخار خالص |
عنوان انگلیسی مقاله | Underwater image and video dehazing with pure haze region segmentation |
انتشار | مقاله سال ۲۰۱۸ |
تعداد صفحات مقاله انگلیسی | ۱۲ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۳٫۷۰۳ در سال ۲۰۱۸ |
شاخص H_index | ۱۲۴ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۷۶۶ در سال ۲۰۱۸ |
شناسه ISSN | ۱۰۷۷-۳۱۴۲ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۸ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | هوش مصنوعی، مهندسی نرم افزار |
نوع ارائه مقاله |
ژورنال |
مجله | بینایی کامپیوتر و درک تصویر – Computer Vision And Image Understanding |
دانشگاه | Centre for Intelligent Sensing, Queen Mary University of London, UK |
کلمات کلیدی | مه زدایی، پردازش تصویر، تقسیم بندی، زیر آب، وایت بالانس، پردازش فیلم |
کلمات کلیدی انگلیسی | Dehazing، Image processing، Segmentation، Underwater، White balancing، Video processing |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.cviu.2017.08.003 |
کد محصول | E13116 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
۱- Introduction ۲- State of the art ۳- Water-type dependent white balancing ۴- Veiling light feature selection ۵- Transmission-based pure haze segmentation ۶- Experiments ۷- Conclusion References |
بخشی از متن مقاله: |
Abstract Underwater scenes captured by cameras are plagued with poor contrast and a spectral distortion, which are the result of the scattering and absorptive properties of water. In this paper we present a novel dehazing method that improves visibility in images and videos by detecting and segmenting image regions that contain only water. The colour of these regions, which we refer to as pure haze regions, is similar to the haze that is removed during the dehazing process. Moreover, we propose a semantic white balancing approach for illuminant estimation that uses the dominant colour of the water to address the spectral distortion present in underwater scenes. To validate the results of our method and compare them to those obtained with state-of-the-art approaches, we perform extensive subjective evaluation tests using images captured in a variety of water types and underwater videos captured onboard an underwater vehicle. Introduction Improving the visibility in underwater images and videos is desirable for underwater robotics, photography/videography and species identification (Ancuti et al., 2012; Beijbom et al., 2012; Roser et al., 2014). While underwater conditions are considered by several authors as similar to dense fog on land, unlike fog, underwater illumination is spectrally deprived as water attenuates different wavelengths of light to different degrees (Emmerson and Ross, 1987). A key challenge is the spectral distortion in underwater scenes, which dehazing methods are unable to compensate for, especially for scenes captured at depth or in turbid waters (Fig. 1). At depth the distortion is caused by the process of absorption where longer wavelengths (red) are highly attenuated and shorter wavelengths (green and blue) are more readily transmitted (Lythgoe, 1974). In turbid coastal waters constituents in the water reduce visibility and more readily increase the transmission of green hues (Lythgoe, 1974). Important parameters to be estimated for underwater dehazing are the veiling light (i.e. the light that is scattered from underwater particles into the line of sight of a camera) and the transmission (i.e. a transfer function that describes the light that is not scattered by the haze and reaches the camera) (He et al., 2011). |